src/work/jacint/preflow_excess.h
changeset 478 8c74de352f80
child 921 818510fa3d99
equal deleted inserted replaced
-1:000000000000 0:20f15f179f33
       
     1 // -*- C++ -*-
       
     2 
       
     3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
       
     4 //constzero jo igy?
       
     5 
       
     6 //majd marci megmondja betegyem-e bfs-t meg resgraphot
       
     7 
       
     8 //constzero helyett az kell hogy flow-e vagy csak preflow, ha flow akor csak
       
     9 //excess[t]-t kell szmaolni
       
    10 
       
    11 /*
       
    12 Heuristics: 
       
    13  2 phase
       
    14  gap
       
    15  list 'level_list' on the nodes on level i implemented by hand
       
    16  stack 'active' on the active nodes on level i implemented by hand
       
    17  runs heuristic 'highest label' for H1*n relabels
       
    18  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
    19  
       
    20 Parameters H0 and H1 are initialized to 20 and 10.
       
    21 
       
    22 Constructors:
       
    23 
       
    24 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
       
    25      FlowMap is not constant zero, and should be true if it is
       
    26 
       
    27 Members:
       
    28 
       
    29 void run()
       
    30 
       
    31 T flowValue() : returns the value of a maximum flow
       
    32 
       
    33 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    34      minimum min cut. M should be a map of bools initialized to false.
       
    35 
       
    36 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    37      maximum min cut. M should be a map of bools initialized to false.
       
    38 
       
    39 void minCut(CutMap& M) : sets M to the characteristic vector of 
       
    40      a min cut. M should be a map of bools initialized to false.
       
    41 
       
    42 FIXME reset
       
    43 
       
    44 */
       
    45 
       
    46 #ifndef HUGO_PREFLOW_H
       
    47 #define HUGO_PREFLOW_H
       
    48 
       
    49 #define H0 20
       
    50 #define H1 1
       
    51 
       
    52 #include <vector>
       
    53 #include <queue>
       
    54 #include <stack>
       
    55 
       
    56 namespace hugo {
       
    57 
       
    58   template <typename Graph, typename T, 
       
    59 	    typename CapMap=typename Graph::template EdgeMap<T>, 
       
    60             typename FlowMap=typename Graph::template EdgeMap<T> >
       
    61   class Preflow {
       
    62     
       
    63     typedef typename Graph::Node Node;
       
    64     typedef typename Graph::Edge Edge;
       
    65     typedef typename Graph::NodeIt NodeIt;
       
    66     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    67     typedef typename Graph::InEdgeIt InEdgeIt;
       
    68     
       
    69     const Graph& G;
       
    70     Node s;
       
    71     Node t;
       
    72     const CapMap& capacity;  
       
    73     FlowMap& flow;
       
    74     T value;
       
    75     bool constzero;
       
    76     bool isflow;
       
    77 
       
    78   public:
       
    79     Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
       
    80 	    FlowMap& _flow, bool _constzero, bool _isflow ) :
       
    81       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), isflow(_isflow) {}
       
    82     
       
    83     
       
    84     void run() {
       
    85       
       
    86       value=0;                //for the subsequent runs
       
    87 
       
    88       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
       
    89       int n=G.nodeNum(); 
       
    90       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
       
    91       int heur1=(int)(H1*n);  //time while running 'highest label'
       
    92       int heur=heur1;         //starting time interval (#of relabels)
       
    93       bool what_heur=1;       
       
    94       /*
       
    95 	what_heur is 0 in case 'bound decrease' 
       
    96 	and 1 in case 'highest label'
       
    97       */
       
    98       bool end=false;     
       
    99       /*
       
   100 	Needed for 'bound decrease', 'true'
       
   101 	means no active nodes are above bound b.
       
   102       */
       
   103       int relabel=0;
       
   104       int k=n-2;  //bound on the highest level under n containing a node
       
   105       int b=k;    //bound on the highest level under n of an active node
       
   106       
       
   107       typename Graph::template NodeMap<int> level(G,n);      
       
   108       typename Graph::template NodeMap<T> excess(G); 
       
   109 
       
   110       std::vector<std::stack<Node> > active(n);
       
   111       /*      std::vector<Node> active(n-1,INVALID);
       
   112       typename Graph::template NodeMap<Node> next(G,INVALID);
       
   113       //Stack of the active nodes in level i < n.
       
   114       //We use it in both phases.*/
       
   115 
       
   116       typename Graph::template NodeMap<Node> left(G,INVALID);
       
   117       typename Graph::template NodeMap<Node> right(G,INVALID);
       
   118       std::vector<Node> level_list(n,INVALID);
       
   119       /*
       
   120 	List of the nodes in level i<n.
       
   121       */
       
   122 
       
   123 
       
   124       if ( constzero ) {
       
   125      
       
   126 	/*Reverse_bfs from t, to find the starting level.*/
       
   127 	level.set(t,0);
       
   128 	std::queue<Node> bfs_queue;
       
   129 	bfs_queue.push(t);
       
   130 	
       
   131 	while (!bfs_queue.empty()) {
       
   132 	  
       
   133 	  Node v=bfs_queue.front();	
       
   134 	  bfs_queue.pop();
       
   135 	  int l=level[v]+1;
       
   136 	  
       
   137 	  InEdgeIt e;
       
   138 	  for(G.first(e,v); G.valid(e); G.next(e)) {
       
   139 	    Node w=G.tail(e);
       
   140 	    if ( level[w] == n && w != s ) {
       
   141 	      bfs_queue.push(w);
       
   142 	      Node first=level_list[l];
       
   143 	      if ( G.valid(first) ) left.set(first,w);
       
   144 	      right.set(w,first);
       
   145 	      level_list[l]=w;
       
   146 	      level.set(w, l);
       
   147 	    }
       
   148 	  }
       
   149 	}
       
   150 
       
   151 	//the starting flow
       
   152 	OutEdgeIt e;
       
   153 	for(G.first(e,s); G.valid(e); G.next(e)) 
       
   154 	{
       
   155 	  T c=capacity[e];
       
   156 	  if ( c == 0 ) continue;
       
   157 	  Node w=G.head(e);
       
   158 	  if ( level[w] < n ) {	  
       
   159 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
       
   160 	    flow.set(e, c); 
       
   161 	    excess.set(w, excess[w]+c);
       
   162 	  }
       
   163 	}
       
   164       }
       
   165       else 
       
   166       {
       
   167 	
       
   168 	/*
       
   169 	  Reverse_bfs from t in the residual graph, 
       
   170 	  to find the starting level.
       
   171 	*/
       
   172 	level.set(t,0);
       
   173 	std::queue<Node> bfs_queue;
       
   174 	bfs_queue.push(t);
       
   175 	
       
   176 	while (!bfs_queue.empty()) {
       
   177 	  
       
   178 	  Node v=bfs_queue.front();	
       
   179 	  bfs_queue.pop();
       
   180 	  int l=level[v]+1;
       
   181 	  
       
   182 	  InEdgeIt e;
       
   183 	  for(G.first(e,v); G.valid(e); G.next(e)) {
       
   184 	    if ( capacity[e] == flow[e] ) continue;
       
   185 	    Node w=G.tail(e);
       
   186 	    if ( level[w] == n && w != s ) {
       
   187 	      bfs_queue.push(w);
       
   188 	      Node first=level_list[l];
       
   189 	      if ( G.valid(first) ) left.set(first,w);
       
   190 	      right.set(w,first);
       
   191 	      level_list[l]=w;
       
   192 	      level.set(w, l);
       
   193 	    }
       
   194 	  }
       
   195 	    
       
   196 	  OutEdgeIt f;
       
   197 	  for(G.first(f,v); G.valid(f); G.next(f)) {
       
   198 	    if ( 0 == flow[f] ) continue;
       
   199 	    Node w=G.head(f);
       
   200 	    if ( level[w] == n && w != s ) {
       
   201 	      bfs_queue.push(w);
       
   202 	      Node first=level_list[l];
       
   203 	      if ( G.valid(first) ) left.set(first,w);
       
   204 	      right.set(w,first);
       
   205 	      level_list[l]=w;
       
   206 	      level.set(w, l);
       
   207 	    }
       
   208 	  }
       
   209 	}
       
   210       
       
   211 	
       
   212 	/*
       
   213 	  Counting the excess
       
   214 	*/
       
   215 
       
   216 	if ( !isflow ) {
       
   217 	  NodeIt v;
       
   218 	  for(G.first(v); G.valid(v); G.next(v)) {
       
   219 	    T exc=0;
       
   220 	    
       
   221 	    InEdgeIt e;
       
   222 	    for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
       
   223 	    OutEdgeIt f;
       
   224 	    for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f];
       
   225 	    
       
   226 	    excess.set(v,exc);	  
       
   227 	    
       
   228 	    //putting the active nodes into the stack
       
   229 	    int lev=level[v];
       
   230 	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
       
   231 	  }
       
   232 	} else {
       
   233 	  T exc=0;
       
   234 	    
       
   235 	  InEdgeIt e;
       
   236 	  for(G.first(e,t); G.valid(e); G.next(e)) exc+=flow[e];
       
   237 	  OutEdgeIt f;
       
   238 	  for(G.first(f,t); G.valid(f); G.next(f)) exc-=flow[f];
       
   239 
       
   240 	  excess.set(t,exc);	  
       
   241 	}
       
   242 
       
   243 
       
   244 	//the starting flow
       
   245 	OutEdgeIt e;
       
   246 	for(G.first(e,s); G.valid(e); G.next(e)) 
       
   247 	{
       
   248 	  T rem=capacity[e]-flow[e];
       
   249 	  if ( rem == 0 ) continue;
       
   250 	  Node w=G.head(e);
       
   251 	  if ( level[w] < n ) {	  
       
   252 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
       
   253 	    flow.set(e, capacity[e]); 
       
   254 	    excess.set(w, excess[w]+rem);
       
   255 	  }
       
   256 	}
       
   257 	
       
   258 	InEdgeIt f;
       
   259 	for(G.first(f,s); G.valid(f); G.next(f)) 
       
   260 	{
       
   261 	  if ( flow[f] == 0 ) continue;
       
   262 	  Node w=G.tail(f);
       
   263 	  if ( level[w] < n ) {	  
       
   264 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
       
   265 	    excess.set(w, excess[w]+flow[f]);
       
   266 	    flow.set(f, 0); 
       
   267 	  }
       
   268 	}
       
   269       }
       
   270 
       
   271 
       
   272 
       
   273 
       
   274       /* 
       
   275 	 End of preprocessing 
       
   276       */
       
   277 
       
   278 
       
   279 
       
   280       /*
       
   281 	Push/relabel on the highest level active nodes.
       
   282       */	
       
   283       while ( true ) {
       
   284 	
       
   285 	if ( b == 0 ) {
       
   286 	  if ( phase ) break;
       
   287 	  
       
   288 	  if ( !what_heur && !end && k > 0 ) {
       
   289 	    b=k;
       
   290 	    end=true;
       
   291 	  } else {
       
   292 	    phase=1;
       
   293 	    level.set(s,0);
       
   294 	    std::queue<Node> bfs_queue;
       
   295 	    bfs_queue.push(s);
       
   296 	    
       
   297 	    while (!bfs_queue.empty()) {
       
   298 	      
       
   299 	      Node v=bfs_queue.front();	
       
   300 	      bfs_queue.pop();
       
   301 	      int l=level[v]+1;
       
   302 	      
       
   303 	      InEdgeIt e;
       
   304 	      for(G.first(e,v); G.valid(e); G.next(e)) {
       
   305 		if ( capacity[e] == flow[e] ) continue;
       
   306 		Node u=G.tail(e);
       
   307 		if ( level[u] >= n ) { 
       
   308 		  bfs_queue.push(u);
       
   309 		  level.set(u, l);
       
   310 		  if ( excess[u] > 0 ) active[l].push(u);
       
   311 		}
       
   312 	      }
       
   313 	    
       
   314 	      OutEdgeIt f;
       
   315 	      for(G.first(f,v); G.valid(f); G.next(f)) {
       
   316 		if ( 0 == flow[f] ) continue;
       
   317 		Node u=G.head(f);
       
   318 		if ( level[u] >= n ) { 
       
   319 		  bfs_queue.push(u);
       
   320 		  level.set(u, l);
       
   321 		  if ( excess[u] > 0 ) active[l].push(u);
       
   322 		}
       
   323 	      }
       
   324 	    }
       
   325 	    b=n-2;
       
   326 	    }
       
   327 	    
       
   328 	}
       
   329 	  
       
   330 
       
   331 	///	  
       
   332 	if ( active[b].empty() ) --b; 
       
   333 	else {
       
   334 	  end=false;  
       
   335 
       
   336 	  Node w=active[b].top();
       
   337 	  active[b].pop();
       
   338 	  int lev=level[w];
       
   339 	  T exc=excess[w];
       
   340 	  int newlevel=n;       //bound on the next level of w
       
   341 	  
       
   342 	  OutEdgeIt e;
       
   343 	  for(G.first(e,w); G.valid(e); G.next(e)) {
       
   344 	    
       
   345 	    if ( flow[e] == capacity[e] ) continue; 
       
   346 	    Node v=G.head(e);            
       
   347 	    //e=wv	    
       
   348 	    
       
   349 	    if( lev > level[v] ) {      
       
   350 	      /*Push is allowed now*/
       
   351 	      
       
   352 	      if ( excess[v]==0 && v!=t && v!=s ) {
       
   353 		int lev_v=level[v];
       
   354 		active[lev_v].push(v);
       
   355 	      }
       
   356 	      
       
   357 	      T cap=capacity[e];
       
   358 	      T flo=flow[e];
       
   359 	      T remcap=cap-flo;
       
   360 	      
       
   361 	      if ( remcap >= exc ) {       
       
   362 		/*A nonsaturating push.*/
       
   363 		
       
   364 		flow.set(e, flo+exc);
       
   365 		excess.set(v, excess[v]+exc);
       
   366 		exc=0;
       
   367 		break; 
       
   368 		
       
   369 	      } else { 
       
   370 		/*A saturating push.*/
       
   371 		
       
   372 		flow.set(e, cap);
       
   373 		excess.set(v, excess[v]+remcap);
       
   374 		exc-=remcap;
       
   375 	      }
       
   376 	    } else if ( newlevel > level[v] ){
       
   377 	      newlevel = level[v];
       
   378 	    }	    
       
   379 	    
       
   380 	  } //for out edges wv 
       
   381 	
       
   382 	
       
   383 	if ( exc > 0 ) {	
       
   384 	  InEdgeIt e;
       
   385 	  for(G.first(e,w); G.valid(e); G.next(e)) {
       
   386 	    
       
   387 	    if( flow[e] == 0 ) continue; 
       
   388 	    Node v=G.tail(e);  
       
   389 	    //e=vw
       
   390 	    
       
   391 	    if( lev > level[v] ) {  
       
   392 	      /*Push is allowed now*/
       
   393 	      
       
   394 	      if ( excess[v]==0 && v!=t && v!=s ) {
       
   395 		int lev_v=level[v];
       
   396 		active[lev_v].push(v);
       
   397 	      }
       
   398 	      
       
   399 	      T flo=flow[e];
       
   400 	      
       
   401 	      if ( flo >= exc ) { 
       
   402 		/*A nonsaturating push.*/
       
   403 		
       
   404 		flow.set(e, flo-exc);
       
   405 		excess.set(v, excess[v]+exc);
       
   406 		exc=0;
       
   407 		break; 
       
   408 	      } else {                                               
       
   409 		/*A saturating push.*/
       
   410 		
       
   411 		excess.set(v, excess[v]+flo);
       
   412 		exc-=flo;
       
   413 		flow.set(e,0);
       
   414 	      }  
       
   415 	    } else if ( newlevel > level[v] ) {
       
   416 	      newlevel = level[v];
       
   417 	    }	    
       
   418 	  } //for in edges vw
       
   419 	  
       
   420 	} // if w still has excess after the out edge for cycle
       
   421 	
       
   422 	excess.set(w, exc);
       
   423 	///	push
       
   424 
       
   425  
       
   426 	/*
       
   427 	  Relabel
       
   428 	*/
       
   429 	
       
   430 
       
   431 	if ( exc > 0 ) {
       
   432 	  //now 'lev' is the old level of w
       
   433 	
       
   434 	  if ( phase ) {
       
   435 	    level.set(w,++newlevel);
       
   436 	    active[newlevel].push(w);
       
   437 	    b=newlevel;
       
   438 	  } else {
       
   439 	    //unlacing starts
       
   440 	    Node right_n=right[w];
       
   441 	    Node left_n=left[w];
       
   442 
       
   443 	    if ( G.valid(right_n) ) {
       
   444 	      if ( G.valid(left_n) ) {
       
   445 		right.set(left_n, right_n);
       
   446 		left.set(right_n, left_n);
       
   447 	      } else {
       
   448 		level_list[lev]=right_n;   
       
   449 		left.set(right_n, INVALID);
       
   450 	      } 
       
   451 	    } else {
       
   452 	      if ( G.valid(left_n) ) {
       
   453 		right.set(left_n, INVALID);
       
   454 	      } else { 
       
   455 		level_list[lev]=INVALID;   
       
   456 	      } 
       
   457 	    } 
       
   458 	    //unlacing ends
       
   459 		
       
   460 	    if ( !G.valid(level_list[lev]) ) {
       
   461 	      
       
   462 	       //gapping starts
       
   463 	      for (int i=lev; i!=k ; ) {
       
   464 		Node v=level_list[++i];
       
   465 		while ( G.valid(v) ) {
       
   466 		  level.set(v,n);
       
   467 		  v=right[v];
       
   468 		}
       
   469 		level_list[i]=INVALID;
       
   470 		if ( !what_heur ) {
       
   471 		  while ( !active[i].empty() ) {
       
   472 		    active[i].pop();    //FIXME: ezt szebben kene
       
   473 		  }
       
   474 		}	     
       
   475 	      }
       
   476 
       
   477 	      level.set(w,n);
       
   478 	      b=lev-1;
       
   479 	      k=b;
       
   480 	      //gapping ends
       
   481 	    
       
   482 	    } else {
       
   483 	      
       
   484 	      if ( newlevel == n ) level.set(w,n); 
       
   485 	      else {
       
   486 		level.set(w,++newlevel);
       
   487 		active[newlevel].push(w);
       
   488 		if ( what_heur ) b=newlevel;
       
   489 		if ( k < newlevel ) ++k;      //now k=newlevel
       
   490 		Node first=level_list[newlevel];
       
   491 		if ( G.valid(first) ) left.set(first,w);
       
   492 		right.set(w,first);
       
   493 		left.set(w,INVALID);
       
   494 		level_list[newlevel]=w;
       
   495 	      }
       
   496 	    }
       
   497 
       
   498 
       
   499 	    ++relabel; 
       
   500 	    if ( relabel >= heur ) {
       
   501 	      relabel=0;
       
   502 	      if ( what_heur ) {
       
   503 		what_heur=0;
       
   504 		heur=heur0;
       
   505 		end=false;
       
   506 	      } else {
       
   507 		what_heur=1;
       
   508 		heur=heur1;
       
   509 		b=k; 
       
   510 	      }
       
   511 	    }
       
   512 	  } //phase 0
       
   513 	  
       
   514 	  
       
   515 	} // if ( exc > 0 )
       
   516 	  
       
   517 	
       
   518 	}  // if stack[b] is nonempty
       
   519 	
       
   520       } // while(true)
       
   521 
       
   522 
       
   523       value = excess[t];
       
   524       /*Max flow value.*/
       
   525      
       
   526     } //void run()
       
   527 
       
   528 
       
   529 
       
   530 
       
   531 
       
   532     /*
       
   533       Returns the maximum value of a flow.
       
   534      */
       
   535 
       
   536     T flowValue() {
       
   537       return value;
       
   538     }
       
   539 
       
   540 
       
   541     FlowMap Flow() {
       
   542       return flow;
       
   543       }
       
   544 
       
   545 
       
   546     void Flow(FlowMap& _flow ) {
       
   547       NodeIt v;
       
   548       for(G.first(v) ; G.valid(v); G.next(v))
       
   549 	_flow.set(v,flow[v]);
       
   550     }
       
   551 
       
   552 
       
   553 
       
   554     /*
       
   555       Returns the minimum min cut, by a bfs from s in the residual graph.
       
   556     */
       
   557    
       
   558     template<typename _CutMap>
       
   559     void minMinCut(_CutMap& M) {
       
   560     
       
   561       std::queue<Node> queue;
       
   562       
       
   563       M.set(s,true);      
       
   564       queue.push(s);
       
   565 
       
   566       while (!queue.empty()) {
       
   567         Node w=queue.front();
       
   568 	queue.pop();
       
   569 
       
   570 	OutEdgeIt e;
       
   571 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   572 	  Node v=G.head(e);
       
   573 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   574 	    queue.push(v);
       
   575 	    M.set(v, true);
       
   576 	  }
       
   577 	} 
       
   578 
       
   579 	InEdgeIt f;
       
   580 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   581 	  Node v=G.tail(f);
       
   582 	  if (!M[v] && flow[f] > 0 ) {
       
   583 	    queue.push(v);
       
   584 	    M.set(v, true);
       
   585 	  }
       
   586 	} 
       
   587       }
       
   588     }
       
   589 
       
   590 
       
   591   
       
   592     /*
       
   593       Returns the maximum min cut, by a reverse bfs 
       
   594       from t in the residual graph.
       
   595     */
       
   596     
       
   597     template<typename _CutMap>
       
   598     void maxMinCut(_CutMap& M) {
       
   599     
       
   600       std::queue<Node> queue;
       
   601       
       
   602       M.set(t,true);        
       
   603       queue.push(t);
       
   604 
       
   605       while (!queue.empty()) {
       
   606         Node w=queue.front();
       
   607 	queue.pop();
       
   608 
       
   609 
       
   610 	InEdgeIt e;
       
   611 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   612 	  Node v=G.tail(e);
       
   613 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   614 	    queue.push(v);
       
   615 	    M.set(v, true);
       
   616 	  }
       
   617 	}
       
   618 	
       
   619 	OutEdgeIt f;
       
   620 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   621 	  Node v=G.head(f);
       
   622 	  if (!M[v] && flow[f] > 0 ) {
       
   623 	    queue.push(v);
       
   624 	    M.set(v, true);
       
   625 	  }
       
   626 	}
       
   627       }
       
   628 
       
   629       NodeIt v;
       
   630       for(G.first(v) ; G.valid(v); G.next(v)) {
       
   631 	M.set(v, !M[v]);
       
   632       }
       
   633 
       
   634     }
       
   635 
       
   636 
       
   637 
       
   638     template<typename CutMap>
       
   639     void minCut(CutMap& M) {
       
   640       minMinCut(M);
       
   641     }
       
   642 
       
   643     
       
   644     void resetTarget (Node _t) {t=_t;}
       
   645     void resetSource (Node _s) {s=_s;}
       
   646    
       
   647     void resetCap (CapMap _cap) {capacity=_cap;}
       
   648 
       
   649     void resetFlow (FlowMap _flow, bool _constzero) {
       
   650       flow=_flow;
       
   651       constzero=_constzero;
       
   652     }
       
   653 
       
   654 
       
   655 
       
   656   };
       
   657 
       
   658 } //namespace hugo
       
   659 
       
   660 #endif //PREFLOW_H
       
   661 
       
   662 
       
   663 
       
   664