src/work/jacint/matching.h
changeset 1133 9fd485470fee
equal deleted inserted replaced
-1:000000000000 0:758d7904a79f
       
     1 // -*- C++ -*-
       
     2 #ifndef LEMON_MAX_MATCHING_H
       
     3 #define LEMON_MAX_MATCHING_H
       
     4 
       
     5 ///\ingroup galgs
       
     6 ///\file
       
     7 ///\brief Maximum matching algorithm.
       
     8 
       
     9 #include <queue>
       
    10 
       
    11 
       
    12 #include <iostream>
       
    13 
       
    14 
       
    15 
       
    16 #include <invalid.h>
       
    17 #include <unionfind.h>
       
    18 #include <lemon/graph_utils.h>
       
    19 
       
    20 namespace lemon {
       
    21 
       
    22   /// \addtogroup galgs
       
    23   /// @{
       
    24 
       
    25   ///Maximum matching algorithms class.
       
    26 
       
    27   ///This class provides Edmonds' alternating forest matching
       
    28   ///algorithm. The starting matching (if any) can be passed to the
       
    29   ///algorithm using read-in functions \ref readNMapNode, \ref
       
    30   ///readNMapEdge or \ref readEMapBool depending on the container. The
       
    31   ///resulting maximum matching can be attained by write-out functions
       
    32   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
       
    33   ///depending on the preferred container. 
       
    34   ///
       
    35   ///The dual side of a mathcing is a map of the nodes to
       
    36   ///MaxMatching::pos_enum, having values D, A and C showing the
       
    37   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
       
    38   ///a graph with factor-critical components, the nodes in A form the
       
    39   ///barrier, and the nodes in C induce a graph having a perfect
       
    40   ///matching. This decomposition can be attained by calling \ref
       
    41   ///writePos after running the algorithm. Before subsequent runs,
       
    42   ///the function \ref resetPos() must be called.
       
    43   ///
       
    44   ///\param Graph The undirected graph type the algorithm runs on.
       
    45   ///
       
    46   ///\author Jacint Szabo  
       
    47   template <typename Graph>
       
    48   class MaxMatching {
       
    49     typedef typename Graph::Node Node;
       
    50     typedef typename Graph::Edge Edge;
       
    51     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
       
    52     typedef typename Graph::NodeIt NodeIt;
       
    53     typedef typename Graph::IncEdgeIt IncEdgeIt;
       
    54 
       
    55     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
       
    56 
       
    57   public:
       
    58     
       
    59     ///Indicates the Gallai-Edmonds decomposition of the graph.
       
    60 
       
    61     ///Indicates the Gallai-Edmonds decomposition of the graph, which
       
    62     ///shows an upper bound on the size of a maximum matching. The
       
    63     ///nodes with pos_enum \c D induce a graph with factor-critical
       
    64     ///components, the nodes in \c A form the canonical barrier, and the
       
    65     ///nodes in \c C induce a graph having a perfect matching. 
       
    66     enum pos_enum {
       
    67       D=0,
       
    68       A=1,
       
    69       C=2
       
    70     }; 
       
    71 
       
    72   private:
       
    73 
       
    74     static const int HEUR_density=2;
       
    75     const Graph& g;
       
    76     typename Graph::template NodeMap<Node> mate;
       
    77     typename Graph::template NodeMap<pos_enum> position;
       
    78      
       
    79   public:
       
    80     
       
    81     MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {}
       
    82 
       
    83     ///Runs Edmonds' algorithm.
       
    84 
       
    85     ///Runs Edmonds' algorithm for sparse graphs (countEdges <=
       
    86     ///2*countNodes), and a heuristical Edmonds' algorithm with a
       
    87     ///heuristic of postponing shrinks for dense graphs. \pre Before
       
    88     ///the subsequent calls \ref resetPos must be called.
       
    89     inline void run();
       
    90 
       
    91     ///Runs Edmonds' algorithm.
       
    92     
       
    93     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
       
    94     ///Edmonds' algorithm with a heuristic of postponing shrinks,
       
    95     ///giving a faster algorithm for dense graphs.  \pre Before the
       
    96     ///subsequent calls \ref resetPos must be called.
       
    97     void runEdmonds( int heur );
       
    98 
       
    99     ///Finds a greedy matching starting from the actual matching.
       
   100     
       
   101     ///Starting form the actual matching stored, it finds a maximal
       
   102     ///greedy matching.
       
   103     void greedyMatching();
       
   104 
       
   105     ///Returns the size of the actual matching stored.
       
   106 
       
   107     ///Returns the size of the actual matching stored. After \ref
       
   108     ///run() it returns the size of a maximum matching in the graph.
       
   109     int size () const;
       
   110 
       
   111     ///Resets the map storing the Gallai-Edmonds decomposition.
       
   112     
       
   113     ///Resets the map storing the Gallai-Edmonds decomposition of the
       
   114     ///graph, making it possible to run the algorithm. Must be called
       
   115     ///before all runs of the Edmonds algorithm, except for the first
       
   116     ///run.
       
   117     void resetPos();
       
   118 
       
   119     ///Resets the actual matching to the empty matching.
       
   120 
       
   121     ///Resets the actual matching to the empty matching.  
       
   122     ///
       
   123     void resetMatching();
       
   124 
       
   125     ///Reads a matching from a \c Node map of \c Nodes.
       
   126 
       
   127     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
       
   128     ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
       
   129     ///\c uv will be an edge of the matching.
       
   130     template<typename NMapN>
       
   131     void readNMapNode(NMapN& map) {
       
   132       for(NodeIt v(g); v!=INVALID; ++v) {
       
   133 	mate.set(v,map[v]);   
       
   134       } 
       
   135     } 
       
   136     
       
   137     ///Writes the stored matching to a \c Node map of \c Nodes.
       
   138 
       
   139     ///Writes the stored matching to a \c Node map of \c Nodes. The
       
   140     ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
       
   141     ///map[v]=u will hold, and now \c uv is an edge of the matching.
       
   142     template<typename NMapN>
       
   143     void writeNMapNode (NMapN& map) const {
       
   144       for(NodeIt v(g); v!=INVALID; ++v) {
       
   145 	map.set(v,mate[v]);   
       
   146       } 
       
   147     } 
       
   148 
       
   149     ///Reads a matching from a \c Node map of \c Edges.
       
   150 
       
   151     ///Reads a matching from a \c Node map of incident \c Edges. This
       
   152     ///map must have the property that if \c G.target(map[u])=v then \c
       
   153     ///G.target(map[v])=u must hold, and now this edge is an edge of
       
   154     ///the matching.
       
   155     template<typename NMapE>
       
   156     void readNMapEdge(NMapE& map) {
       
   157      for(NodeIt v(g); v!=INVALID; ++v) {
       
   158 	Edge e=map[v];
       
   159 	if ( g.valid(e) )
       
   160 	  g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); 
       
   161       } 
       
   162     } 
       
   163     
       
   164     ///Writes the matching stored to a \c Node map of \c Edges.
       
   165 
       
   166     ///Writes the stored matching to a \c Node map of incident \c
       
   167     ///Edges. This map will have the property that if \c
       
   168     ///g.target(map[u])=v then \c g.target(map[v])=u holds, and now this
       
   169     ///edge is an edge of the matching.
       
   170     template<typename NMapE>
       
   171     void writeNMapEdge (NMapE& map)  const {
       
   172       typename Graph::template NodeMap<bool> todo(g,true); 
       
   173       for(NodeIt v(g); v!=INVALID; ++v) {
       
   174 	if ( todo[v] && mate[v]!=INVALID ) {
       
   175 	  Node u=mate[v];
       
   176 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
       
   177 	    if ( g.target(e) == u ) {
       
   178 	      map.set(u,e);
       
   179 	      map.set(v,e);
       
   180 	      todo.set(u,false);
       
   181 	      todo.set(v,false);
       
   182 	      break;
       
   183 	    }
       
   184 	  }
       
   185 	}
       
   186       } 
       
   187     }
       
   188 
       
   189 
       
   190     ///Reads a matching from an \c Edge map of \c bools.
       
   191     
       
   192     ///Reads a matching from an \c Edge map of \c bools. This map must
       
   193     ///have the property that there are no two adjacent edges \c e, \c
       
   194     ///f with \c map[e]=map[f]=true. The edges \c e with \c
       
   195     ///map[e]=true form the matching.
       
   196     template<typename EMapB>
       
   197     void readEMapBool(EMapB& map) {
       
   198       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
       
   199 	if ( map[e] ) {
       
   200 	  Node u=g.source(e);	  
       
   201 	  Node v=g.target(e);
       
   202 	  mate.set(u,v);
       
   203 	  mate.set(v,u);
       
   204 	} 
       
   205       } 
       
   206     }
       
   207     //iterable boolmap?
       
   208 
       
   209 
       
   210     ///Writes the matching stored to an \c Edge map of \c bools.
       
   211 
       
   212     ///Writes the matching stored to an \c Edge map of \c bools. This
       
   213     ///map will have the property that there are no two adjacent edges
       
   214     ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
       
   215     ///map[e]=true form the matching.
       
   216     template<typename EMapB>
       
   217     void writeEMapBool (EMapB& map) const {
       
   218       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
       
   219 
       
   220       typename Graph::template NodeMap<bool> todo(g,true); 
       
   221       for(NodeIt v(g); v!=INVALID; ++v) {
       
   222 	if ( todo[v] && mate[v]!=INVALID ) {
       
   223 	  Node u=mate[v];
       
   224 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
       
   225 	    if ( g.target(e) == u ) {
       
   226 	      map.set(e,true);
       
   227 	      todo.set(u,false);
       
   228 	      todo.set(v,false);
       
   229 	      break;
       
   230 	    }
       
   231 	  }
       
   232 	}
       
   233       } 
       
   234     }
       
   235 
       
   236 
       
   237     ///Writes the canonical decomposition of the graph after running
       
   238     ///the algorithm.
       
   239 
       
   240     ///After calling any run methods of the class, and before calling
       
   241     ///\ref resetPos(), it writes the Gallai-Edmonds canonical
       
   242     ///decomposition of the graph. \c map must be a node map
       
   243     ///of \ref pos_enum 's.
       
   244     template<typename NMapEnum>
       
   245     void writePos (NMapEnum& map) const {
       
   246       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
       
   247     }
       
   248 
       
   249   private: 
       
   250 
       
   251     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
       
   252 		    UFE& blossom, UFE& tree);
       
   253 
       
   254     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
       
   255 		    UFE& blossom, UFE& tree);
       
   256 
       
   257     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
       
   258 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
       
   259 
       
   260     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
       
   261 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
       
   262 
       
   263     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
       
   264 		 UFE& blossom, UFE& tree);
       
   265   };
       
   266 
       
   267 
       
   268   // **********************************************************************
       
   269   //  IMPLEMENTATIONS
       
   270   // **********************************************************************
       
   271 
       
   272 
       
   273   template <typename Graph>
       
   274   void MaxMatching<Graph>::run() {
       
   275     if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
       
   276       greedyMatching();
       
   277       runEdmonds(1);
       
   278     } else runEdmonds(0);
       
   279   }
       
   280 
       
   281 
       
   282   template <typename Graph>
       
   283   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
       
   284       
       
   285     std::cout<<"Entering runEdmonds"<<std::endl;
       
   286 
       
   287     typename Graph::template NodeMap<Node> ear(g,INVALID); 
       
   288     //undefined for the base nodes of the blossoms (i.e. for the
       
   289     //representative elements of UFE blossom) and for the nodes in C
       
   290  
       
   291     typename UFE::MapType blossom_base(g);
       
   292     UFE blossom(blossom_base);
       
   293     typename UFE::MapType tree_base(g);
       
   294     UFE tree(tree_base);
       
   295 
       
   296     for(NodeIt v(g); v!=INVALID; ++v) {
       
   297       if ( position[v]==C && mate[v]==INVALID ) {
       
   298 	blossom.insert(v);
       
   299 	tree.insert(v); 
       
   300 	position.set(v,D);
       
   301 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
       
   302 	else normShrink( v, ear, blossom, tree );
       
   303       }
       
   304     }
       
   305 
       
   306 
       
   307     std::cout<<" runEdmonds end"<<std::endl;
       
   308 
       
   309 
       
   310   }
       
   311     
       
   312   template <typename Graph>
       
   313   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
       
   314 				      UFE& blossom, UFE& tree) {
       
   315      
       
   316 
       
   317     std::cout<<"Entering lateShrink"<<std::endl;
       
   318 
       
   319 
       
   320     std::queue<Node> Q;   //queue of the totally unscanned nodes
       
   321     Q.push(v);  
       
   322     std::queue<Node> R;   
       
   323     //queue of the nodes which must be scanned for a possible shrink
       
   324       
       
   325     while ( !Q.empty() ) {
       
   326       Node x=Q.front();
       
   327       Q.pop();
       
   328       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
       
   329       else R.push(x);
       
   330     }
       
   331       
       
   332     while ( !R.empty() ) {
       
   333       Node x=R.front();
       
   334       R.pop();
       
   335 	
       
   336       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
       
   337 	Node y=g.target(e);
       
   338 
       
   339 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
       
   340 	  //x and y must be in the same tree//biztos? az oddbol d-belive lettek is?
       
   341 	
       
   342 	  typename Graph::template NodeMap<bool> path(g,false);
       
   343 
       
   344 	  Node b=blossom.find(x);
       
   345 	  path.set(b,true);
       
   346 	  b=mate[b];
       
   347 	  while ( b!=INVALID ) { 
       
   348 	    b=blossom.find(ear[b]);
       
   349 	    path.set(b,true);
       
   350 	    b=mate[b];
       
   351 	  } //going till the root
       
   352 	
       
   353 	  Node top=y;
       
   354 	  Node middle=blossom.find(top);
       
   355 	  Node bottom=x;
       
   356 	  while ( !path[middle] )
       
   357 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   358 		  
       
   359 	  Node base=middle;
       
   360 	  top=x;
       
   361 	  middle=blossom.find(top);
       
   362 	  bottom=y;
       
   363 	  Node blossom_base=blossom.find(base);
       
   364 	  while ( middle!=blossom_base )
       
   365 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   366 		  
       
   367 	  blossom.makeRep(base);
       
   368 	} // if shrink is needed
       
   369 
       
   370 	//most nehany odd node is d-beli lett, es rajuk az is megnezendo hogy mely d-beliekkel szonszedosak mas faban
       
   371 
       
   372 	while ( !Q.empty() ) {
       
   373 	  Node x=Q.front();
       
   374 	  Q.pop();
       
   375 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
       
   376 	  else R.push(x);
       
   377 	}
       
   378       } //for e
       
   379     } // while ( !R.empty() )
       
   380   }
       
   381 
       
   382 
       
   383   template <typename Graph>
       
   384   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
       
   385 				      UFE& blossom, UFE& tree) {
       
   386 
       
   387 
       
   388     std::cout<<"Entering normShrink with node "<<g.id(v)<<std::endl;
       
   389 
       
   390 
       
   391     std::queue<Node> Q;   //queue of the unscanned nodes
       
   392     Q.push(v);  
       
   393     while ( !Q.empty() ) {
       
   394 
       
   395       std::cout<<"beginning of norm while"<<std::endl;
       
   396 
       
   397       Node x=Q.front();
       
   398       Q.pop();
       
   399 	
       
   400       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
       
   401 
       
   402 
       
   403 	for( IncEdgeIt f(g,x); f!=INVALID; ++f ) {
       
   404 	  std::cout<<"Starting for." <<std::endl;
       
   405 	  std::cout<<"edges " << g.id(f)<< " : " << g.id(g.target(f))<<std::endl;
       
   406 	  std::cout<<"Ending for." <<std::endl;
       
   407 	}
       
   408 
       
   409 	std::cout<<"Ending the whole for." <<std::endl;
       
   410 	std::cout<<"for (In normShrink) with edge " << g.id(e)<< " : " << g.id(x);
       
   411 
       
   412 	Node y=g.target(e);
       
   413 	
       
   414 	std::cout<<" "<<g.id(y)<<std::endl;
       
   415 	      
       
   416 	switch ( position[y] ) {
       
   417 	case D:          //x and y must be in the same tree //asszem nem!!!
       
   418 
       
   419 	  std::cout<<" pos[y] " << position[y]<<std::endl;
       
   420 	  std::cout<<" blossom.find(x) ="<< g.id(blossom.find(x))<<std::endl;
       
   421 	  std::cout<<" blossom.find(y) ="<< g.id(blossom.find(y))<<std::endl;
       
   422 
       
   423 
       
   424 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
       
   425 	    typename Graph::template NodeMap<bool> path(g,false);
       
   426 	      
       
   427 	    Node b=blossom.find(x);
       
   428 	    path.set(b,true);
       
   429 	    b=mate[b];
       
   430 	    while ( b!=INVALID ) { 
       
   431 	      b=blossom.find(ear[b]);
       
   432 	      path.set(b,true);
       
   433 	      b=mate[b];
       
   434 	    } //going till the root
       
   435 	
       
   436 	    Node top=y;
       
   437 	    Node middle=blossom.find(top);
       
   438 	    Node bottom=x;
       
   439 	    while ( !path[middle] )
       
   440 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   441 		
       
   442 	    Node base=middle;
       
   443 	    top=x;
       
   444 	    middle=blossom.find(top);
       
   445 	    bottom=y;
       
   446 	    Node blossom_base=blossom.find(base);
       
   447 	    while ( middle!=blossom_base )
       
   448 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   449 		
       
   450 	    blossom.makeRep(base);
       
   451 	  }
       
   452 	  break;
       
   453 	case C:
       
   454 	  if ( mate[y]!=INVALID ) {   //grow
       
   455 	    
       
   456 	    std::cout<<"grow"<<std::endl;
       
   457 
       
   458 	    ear.set(y,x);
       
   459 	    Node w=mate[y];
       
   460 	    blossom.insert(w);
       
   461 	    position.set(y,A); 
       
   462 	    position.set(w,D); 
       
   463 	    tree.insert(y);
       
   464 	    tree.insert(w);
       
   465 	    tree.join(y,blossom.find(x));  
       
   466 	    tree.join(w,y);  
       
   467 	    Q.push(w);
       
   468 
       
   469 	  } else {                 //augment  
       
   470 
       
   471 	    std::cout<<"augment"<<std::endl;
       
   472 
       
   473 	    augment(x, ear, blossom, tree);
       
   474 	    mate.set(x,y);
       
   475 	    mate.set(y,x);
       
   476 	    return;
       
   477 	  } //if 
       
   478 
       
   479 	  std::cout<<"end c eset"<<std::endl;
       
   480 	  break;
       
   481 	default: break;
       
   482 	}
       
   483 	std::cout<<"end switch"<<std::endl;
       
   484       }
       
   485     }
       
   486   }
       
   487 
       
   488   template <typename Graph>
       
   489   void MaxMatching<Graph>::greedyMatching() {
       
   490     for(NodeIt v(g); v!=INVALID; ++v)
       
   491       if ( mate[v]==INVALID ) {
       
   492 	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
       
   493 	  Node y=g.target(e);
       
   494 	  if ( mate[y]==INVALID && y!=v ) {
       
   495 	    mate.set(v,y);
       
   496 	    mate.set(y,v);
       
   497 	    break;
       
   498 	  }
       
   499 	}
       
   500       } 
       
   501   }
       
   502    
       
   503   template <typename Graph>
       
   504   int MaxMatching<Graph>::size() const {
       
   505     int s=0;
       
   506     for(NodeIt v(g); v!=INVALID; ++v) {
       
   507       if ( mate[v]!=INVALID ) {
       
   508 	++s;
       
   509       }
       
   510     }
       
   511     return (int)s/2;
       
   512   }
       
   513 
       
   514   template <typename Graph>
       
   515   void MaxMatching<Graph>::resetPos() {
       
   516     for(NodeIt v(g); v!=INVALID; ++v)
       
   517       position.set(v,C);      
       
   518   }
       
   519 
       
   520   template <typename Graph>
       
   521   void MaxMatching<Graph>::resetMatching() {
       
   522     for(NodeIt v(g); v!=INVALID; ++v)
       
   523       mate.set(v,INVALID);      
       
   524   }
       
   525 
       
   526   template <typename Graph>
       
   527   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
       
   528 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
       
   529     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
       
   530       Node y=g.target(e);
       
   531 	
       
   532       if ( position[y]==C ) {
       
   533 	if ( mate[y]!=INVALID ) {       //grow
       
   534 	  ear.set(y,x);
       
   535 	  Node w=mate[y];
       
   536 	  blossom.insert(w);
       
   537 	  position.set(y,A);
       
   538 	  position.set(w,D);
       
   539 	  tree.insert(y);
       
   540 	  tree.insert(w);
       
   541 	  tree.join(y,blossom.find(x));  
       
   542 	  tree.join(w,y);  
       
   543 	  Q.push(w);
       
   544 	} else {                      //augment 
       
   545 	  augment(x, ear, blossom, tree);
       
   546 	  mate.set(x,y);
       
   547 	  mate.set(y,x);
       
   548 	  return true;
       
   549 	}
       
   550       }
       
   551     }
       
   552     return false;
       
   553   }
       
   554 
       
   555   template <typename Graph>
       
   556   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
       
   557 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
       
   558     ear.set(top,bottom);
       
   559     Node t=top;
       
   560     while ( t!=middle ) {
       
   561       Node u=mate[t];
       
   562       t=ear[u];
       
   563       ear.set(t,u);
       
   564     } 
       
   565     bottom=mate[middle];
       
   566     position.set(bottom,D);
       
   567     Q.push(bottom);
       
   568     top=ear[bottom];		
       
   569     Node oldmiddle=middle;
       
   570     middle=blossom.find(top);
       
   571     tree.erase(bottom);
       
   572     tree.erase(oldmiddle);
       
   573     blossom.insert(bottom);
       
   574     blossom.join(bottom, oldmiddle);
       
   575     blossom.join(top, oldmiddle);
       
   576   }
       
   577 
       
   578   template <typename Graph>
       
   579   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
       
   580 				   UFE& blossom, UFE& tree) { 
       
   581     Node v=mate[x];
       
   582     while ( v!=INVALID ) {
       
   583 	
       
   584       Node u=ear[v];
       
   585       mate.set(v,u);
       
   586       Node tmp=v;
       
   587       v=mate[u];
       
   588       mate.set(u,tmp);
       
   589     }
       
   590     typename UFE::ItemIt it;
       
   591     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
       
   592       if ( position[it] == D ) {
       
   593 	typename UFE::ItemIt b_it;
       
   594 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
       
   595 	  position.set( b_it ,C);
       
   596 	}
       
   597 	blossom.eraseClass(it);
       
   598       } else position.set( it ,C);
       
   599     }
       
   600     tree.eraseClass(x);
       
   601 
       
   602   }
       
   603 
       
   604   /// @}
       
   605   
       
   606 } //END OF NAMESPACE LEMON
       
   607 
       
   608 #endif //EDMONDS_H