|
1 /* -*- C++ -*- |
|
2 * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library |
|
3 * |
|
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
5 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
6 * |
|
7 * Permission to use, modify and distribute this software is granted |
|
8 * provided that this copyright notice appears in all copies. For |
|
9 * precise terms see the accompanying LICENSE file. |
|
10 * |
|
11 * This software is provided "AS IS" with no warranty of any kind, |
|
12 * express or implied, and with no claim as to its suitability for any |
|
13 * purpose. |
|
14 * |
|
15 */ |
|
16 |
|
17 #ifndef LEMON_LINEAR_HEAP_H |
|
18 #define LEMON_LINEAR_HEAP_H |
|
19 |
|
20 ///\ingroup auxdat |
|
21 ///\file |
|
22 ///\brief Binary Heap implementation. |
|
23 |
|
24 #include <vector> |
|
25 #include <utility> |
|
26 #include <functional> |
|
27 |
|
28 namespace lemon { |
|
29 |
|
30 /// \addtogroup auxdat |
|
31 /// @{ |
|
32 |
|
33 /// \brief A Linear Heap implementation. |
|
34 /// |
|
35 /// This class implements the \e linear \e heap data structure. A \e heap |
|
36 /// is a data structure for storing items with specified values called \e |
|
37 /// priorities in such a way that finding the item with minimum priority is |
|
38 /// efficient. The linear heap is very simple implementation, it can store |
|
39 /// only integer priorities and it stores for each priority in the [0..C] |
|
40 /// range a list of items. So it should be used only when the priorities |
|
41 /// are small. It is not intended to use as dijkstra heap. |
|
42 /// |
|
43 /// \param _Item Type of the items to be stored. |
|
44 /// \param _ItemIntMap A read and writable Item int map, used internally |
|
45 /// to handle the cross references. |
|
46 /// \param minimize If the given parameter is true then the heap gives back |
|
47 /// the lowest priority. |
|
48 template <typename _Item, typename _ItemIntMap, bool minimize = true > |
|
49 class LinearHeap { |
|
50 |
|
51 public: |
|
52 typedef _Item Item; |
|
53 typedef int Prio; |
|
54 typedef std::pair<Item, Prio> Pair; |
|
55 typedef _ItemIntMap ItemIntMap; |
|
56 |
|
57 /// \brief Type to represent the items states. |
|
58 /// |
|
59 /// Each Item element have a state associated to it. It may be "in heap", |
|
60 /// "pre heap" or "post heap". The latter two are indifferent from the |
|
61 /// heap's point of view, but may be useful to the user. |
|
62 /// |
|
63 /// The ItemIntMap \e should be initialized in such way that it maps |
|
64 /// PRE_HEAP (-1) to any element to be put in the heap... |
|
65 enum state_enum { |
|
66 IN_HEAP = 0, |
|
67 PRE_HEAP = -1, |
|
68 POST_HEAP = -2 |
|
69 }; |
|
70 |
|
71 public: |
|
72 /// \brief The constructor. |
|
73 /// |
|
74 /// The constructor. |
|
75 /// \param _index should be given to the constructor, since it is used |
|
76 /// internally to handle the cross references. The value of the map |
|
77 /// should be PRE_HEAP (-1) for each element. |
|
78 explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {} |
|
79 |
|
80 /// The number of items stored in the heap. |
|
81 /// |
|
82 /// \brief Returns the number of items stored in the heap. |
|
83 int size() const { return data.size(); } |
|
84 |
|
85 /// \brief Checks if the heap stores no items. |
|
86 /// |
|
87 /// Returns \c true if and only if the heap stores no items. |
|
88 bool empty() const { return data.empty(); } |
|
89 |
|
90 /// \brief Make empty this heap. |
|
91 /// |
|
92 /// Make empty this heap. |
|
93 void clear() { |
|
94 for (int i = 0; i < (int)data.size(); ++i) { |
|
95 index[data[i].item] = -2; |
|
96 } |
|
97 data.clear(); first.clear(); minimal = 0; |
|
98 } |
|
99 |
|
100 private: |
|
101 |
|
102 void relocate_last(int idx) { |
|
103 if (idx + 1 < (int)data.size()) { |
|
104 data[idx] = data.back(); |
|
105 if (data[idx].prev != -1) { |
|
106 data[data[idx].prev].next = idx; |
|
107 } else { |
|
108 first[data[idx].value] = idx; |
|
109 } |
|
110 if (data[idx].next != -1) { |
|
111 data[data[idx].next].prev = idx; |
|
112 } |
|
113 index[data[idx].item] = idx; |
|
114 } |
|
115 data.pop_back(); |
|
116 } |
|
117 |
|
118 void unlace(int idx) { |
|
119 if (data[idx].prev != -1) { |
|
120 data[data[idx].prev].next = data[idx].next; |
|
121 } else { |
|
122 first[data[idx].value] = data[idx].next; |
|
123 } |
|
124 if (data[idx].next != -1) { |
|
125 data[data[idx].next].prev = data[idx].prev; |
|
126 } |
|
127 } |
|
128 |
|
129 void lace(int idx) { |
|
130 if ((int)first.size() <= data[idx].value) { |
|
131 first.resize(data[idx].value + 1, -1); |
|
132 } |
|
133 data[idx].next = first[data[idx].value]; |
|
134 if (data[idx].next != -1) { |
|
135 data[data[idx].next].prev = idx; |
|
136 } |
|
137 first[data[idx].value] = idx; |
|
138 data[idx].prev = -1; |
|
139 } |
|
140 |
|
141 public: |
|
142 /// \brief Insert a pair of item and priority into the heap. |
|
143 /// |
|
144 /// Adds \c p.first to the heap with priority \c p.second. |
|
145 /// \param p The pair to insert. |
|
146 void push(const Pair& p) { |
|
147 push(p.first, p.second); |
|
148 } |
|
149 |
|
150 /// \brief Insert an item into the heap with the given priority. |
|
151 /// |
|
152 /// Adds \c i to the heap with priority \c p. |
|
153 /// \param i The item to insert. |
|
154 /// \param p The priority of the item. |
|
155 void push(const Item &i, const Prio &p) { |
|
156 int idx = data.size(); |
|
157 index[i] = idx; |
|
158 data.push_back(LinearItem(i, p)); |
|
159 lace(idx); |
|
160 if (p < minimal) { |
|
161 minimal = p; |
|
162 } |
|
163 } |
|
164 |
|
165 /// \brief Returns the item with minimum priority relative to \c Compare. |
|
166 /// |
|
167 /// This method returns the item with minimum priority relative to \c |
|
168 /// Compare. |
|
169 /// \pre The heap must be nonempty. |
|
170 Item top() const { |
|
171 while (first[minimal] == -1) { |
|
172 ++minimal; |
|
173 } |
|
174 return data[first[minimal]].item; |
|
175 } |
|
176 |
|
177 /// \brief Returns the minimum priority relative to \c Compare. |
|
178 /// |
|
179 /// It returns the minimum priority relative to \c Compare. |
|
180 /// \pre The heap must be nonempty. |
|
181 Prio prio() const { |
|
182 while (first[minimal] == -1) { |
|
183 ++minimal; |
|
184 } |
|
185 return minimal; |
|
186 } |
|
187 |
|
188 /// \brief Deletes the item with minimum priority relative to \c Compare. |
|
189 /// |
|
190 /// This method deletes the item with minimum priority relative to \c |
|
191 /// Compare from the heap. |
|
192 /// \pre The heap must be non-empty. |
|
193 void pop() { |
|
194 while (first[minimal] == -1) { |
|
195 ++minimal; |
|
196 } |
|
197 int idx = first[minimal]; |
|
198 index[data[idx].item] = -2; |
|
199 unlace(idx); |
|
200 relocate_last(idx); |
|
201 } |
|
202 |
|
203 /// \brief Deletes \c i from the heap. |
|
204 /// |
|
205 /// This method deletes item \c i from the heap, if \c i was |
|
206 /// already stored in the heap. |
|
207 /// \param i The item to erase. |
|
208 void erase(const Item &i) { |
|
209 int idx = index[i]; |
|
210 index[data[idx].item] = -2; |
|
211 unlace(idx); |
|
212 relocate_last(idx); |
|
213 } |
|
214 |
|
215 |
|
216 /// \brief Returns the priority of \c i. |
|
217 /// |
|
218 /// This function returns the priority of item \c i. |
|
219 /// \pre \c i must be in the heap. |
|
220 /// \param i The item. |
|
221 Prio operator[](const Item &i) const { |
|
222 int idx = index[i]; |
|
223 return data[idx].value; |
|
224 } |
|
225 |
|
226 /// \brief \c i gets to the heap with priority \c p independently |
|
227 /// if \c i was already there. |
|
228 /// |
|
229 /// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
230 /// in the heap and sets the priority of \c i to \c p otherwise. |
|
231 /// \param i The item. |
|
232 /// \param p The priority. |
|
233 void set(const Item &i, const Prio &p) { |
|
234 int idx = index[i]; |
|
235 if (idx < 0) { |
|
236 push(i,p); |
|
237 } else if (p > data[idx].value) { |
|
238 increase(i, p); |
|
239 } else { |
|
240 decrease(i, p); |
|
241 } |
|
242 } |
|
243 |
|
244 /// \brief Decreases the priority of \c i to \c p. |
|
245 |
|
246 /// This method decreases the priority of item \c i to \c p. |
|
247 /// \pre \c i must be stored in the heap with priority at least \c |
|
248 /// p relative to \c Compare. |
|
249 /// \param i The item. |
|
250 /// \param p The priority. |
|
251 void decrease(const Item &i, const Prio &p) { |
|
252 int idx = index[i]; |
|
253 unlace(idx); |
|
254 data[idx].value = p; |
|
255 if (p < minimal) { |
|
256 minimal = p; |
|
257 } |
|
258 lace(idx); |
|
259 } |
|
260 |
|
261 /// \brief Increases the priority of \c i to \c p. |
|
262 /// |
|
263 /// This method sets the priority of item \c i to \c p. |
|
264 /// \pre \c i must be stored in the heap with priority at most \c |
|
265 /// p relative to \c Compare. |
|
266 /// \param i The item. |
|
267 /// \param p The priority. |
|
268 void increase(const Item &i, const Prio &p) { |
|
269 int idx = index[i]; |
|
270 unlace(idx); |
|
271 data[idx].value = p; |
|
272 lace(idx); |
|
273 } |
|
274 |
|
275 /// \brief Returns if \c item is in, has already been in, or has |
|
276 /// never been in the heap. |
|
277 /// |
|
278 /// This method returns PRE_HEAP if \c item has never been in the |
|
279 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
280 /// otherwise. In the latter case it is possible that \c item will |
|
281 /// get back to the heap again. |
|
282 /// \param i The item. |
|
283 state_enum state(const Item &i) const { |
|
284 int idx = index[i]; |
|
285 if (idx >= 0) idx = 0; |
|
286 return state_enum(idx); |
|
287 } |
|
288 |
|
289 private: |
|
290 |
|
291 struct LinearItem { |
|
292 LinearItem(const Item& _item, int _value) |
|
293 : item(_item), value(_value) {} |
|
294 |
|
295 Item item; |
|
296 int value; |
|
297 |
|
298 int prev, next; |
|
299 }; |
|
300 |
|
301 ItemIntMap& index; |
|
302 std::vector<int> first; |
|
303 std::vector<LinearItem> data; |
|
304 mutable int minimal; |
|
305 |
|
306 }; // class LinearHeap |
|
307 |
|
308 |
|
309 template <typename _Item, typename _ItemIntMap> |
|
310 class LinearHeap<_Item, _ItemIntMap, false> { |
|
311 |
|
312 public: |
|
313 typedef _Item Item; |
|
314 typedef int Prio; |
|
315 typedef std::pair<Item, Prio> Pair; |
|
316 typedef _ItemIntMap ItemIntMap; |
|
317 |
|
318 enum state_enum { |
|
319 IN_HEAP = 0, |
|
320 PRE_HEAP = -1, |
|
321 POST_HEAP = -2 |
|
322 }; |
|
323 |
|
324 public: |
|
325 |
|
326 explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {} |
|
327 |
|
328 int size() const { return data.size(); } |
|
329 bool empty() const { return data.empty(); } |
|
330 |
|
331 void clear() { |
|
332 for (int i = 0; i < (int)data.size(); ++i) { |
|
333 index[data[i].item] = -2; |
|
334 } |
|
335 data.clear(); first.clear(); maximal = -1; |
|
336 } |
|
337 |
|
338 private: |
|
339 |
|
340 void relocate_last(int idx) { |
|
341 if (idx + 1 != (int)data.size()) { |
|
342 data[idx] = data.back(); |
|
343 if (data[idx].prev != -1) { |
|
344 data[data[idx].prev].next = idx; |
|
345 } else { |
|
346 first[data[idx].value] = idx; |
|
347 } |
|
348 if (data[idx].next != -1) { |
|
349 data[data[idx].next].prev = idx; |
|
350 } |
|
351 index[data[idx].item] = idx; |
|
352 } |
|
353 data.pop_back(); |
|
354 } |
|
355 |
|
356 void unlace(int idx) { |
|
357 if (data[idx].prev != -1) { |
|
358 data[data[idx].prev].next = data[idx].next; |
|
359 } else { |
|
360 first[data[idx].value] = data[idx].next; |
|
361 } |
|
362 if (data[idx].next != -1) { |
|
363 data[data[idx].next].prev = data[idx].prev; |
|
364 } |
|
365 } |
|
366 |
|
367 void lace(int idx) { |
|
368 if ((int)first.size() <= data[idx].value) { |
|
369 first.resize(data[idx].value + 1, -1); |
|
370 } |
|
371 data[idx].next = first[data[idx].value]; |
|
372 if (data[idx].next != -1) { |
|
373 data[data[idx].next].prev = idx; |
|
374 } |
|
375 first[data[idx].value] = idx; |
|
376 data[idx].prev = -1; |
|
377 } |
|
378 |
|
379 public: |
|
380 |
|
381 void push(const Pair& p) { |
|
382 push(p.first, p.second); |
|
383 } |
|
384 |
|
385 void push(const Item &i, const Prio &p) { |
|
386 int idx = data.size(); |
|
387 index[i] = idx; |
|
388 data.push_back(LinearItem(i, p)); |
|
389 lace(idx); |
|
390 if (data[idx].value > maximal) { |
|
391 maximal = data[idx].value; |
|
392 } |
|
393 } |
|
394 |
|
395 Item top() const { |
|
396 while (first[maximal] == -1) { |
|
397 --maximal; |
|
398 } |
|
399 return data[first[maximal]].item; |
|
400 } |
|
401 |
|
402 Prio prio() const { |
|
403 while (first[maximal] == -1) { |
|
404 --maximal; |
|
405 } |
|
406 return maximal; |
|
407 } |
|
408 |
|
409 void pop() { |
|
410 while (first[maximal] == -1) { |
|
411 --maximal; |
|
412 } |
|
413 int idx = first[maximal]; |
|
414 index[data[idx].item] = -2; |
|
415 unlace(idx); |
|
416 relocate_last(idx); |
|
417 } |
|
418 |
|
419 void erase(const Item &i) { |
|
420 int idx = index[i]; |
|
421 index[data[idx].item] = -2; |
|
422 unlace(idx); |
|
423 relocate_last(idx); |
|
424 } |
|
425 |
|
426 Prio operator[](const Item &i) const { |
|
427 int idx = index[i]; |
|
428 return data[idx].value; |
|
429 } |
|
430 |
|
431 void set(const Item &i, const Prio &p) { |
|
432 int idx = index[i]; |
|
433 if (idx < 0) { |
|
434 push(i,p); |
|
435 } else if (p > data[idx].value) { |
|
436 decrease(i, p); |
|
437 } else { |
|
438 increase(i, p); |
|
439 } |
|
440 } |
|
441 |
|
442 void decrease(const Item &i, const Prio &p) { |
|
443 int idx = index[i]; |
|
444 unlace(idx); |
|
445 data[idx].value = p; |
|
446 if (p > maximal) { |
|
447 maximal = p; |
|
448 } |
|
449 lace(idx); |
|
450 } |
|
451 |
|
452 void increase(const Item &i, const Prio &p) { |
|
453 int idx = index[i]; |
|
454 unlace(idx); |
|
455 data[idx].value = p; |
|
456 lace(idx); |
|
457 } |
|
458 |
|
459 state_enum state(const Item &i) const { |
|
460 int idx = index[i]; |
|
461 if (idx >= 0) idx = 0; |
|
462 return state_enum(idx); |
|
463 } |
|
464 |
|
465 private: |
|
466 |
|
467 struct LinearItem { |
|
468 LinearItem(const Item& _item, int _value) |
|
469 : item(_item), value(_value) {} |
|
470 |
|
471 Item item; |
|
472 int value; |
|
473 |
|
474 int prev, next; |
|
475 }; |
|
476 |
|
477 ItemIntMap& index; |
|
478 std::vector<int> first; |
|
479 std::vector<LinearItem> data; |
|
480 mutable int maximal; |
|
481 |
|
482 }; // class LinearHeap |
|
483 |
|
484 } |
|
485 |
|
486 #endif |