lemon/belmann_ford.h
changeset 1709 a323456bf7c8
child 1710 f531c16dd923
equal deleted inserted replaced
-1:000000000000 0:48c45c978b83
       
     1 /* -*- C++ -*-
       
     2  * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef LEMON_BELMANN_FORD_H
       
    18 #define LEMON_BELMANN_FORD_H
       
    19 
       
    20 ///\ingroup flowalgs
       
    21 /// \file
       
    22 /// \brief BelmannFord algorithm.
       
    23 ///
       
    24 /// \todo getPath() should be implemented! (also for BFS and DFS)
       
    25 
       
    26 #include <lemon/list_graph.h>
       
    27 #include <lemon/invalid.h>
       
    28 #include <lemon/error.h>
       
    29 #include <lemon/maps.h>
       
    30 
       
    31 #include <limits>
       
    32 
       
    33 namespace lemon {
       
    34 
       
    35   /// \brief Default OperationTraits for the BelmannFord algorithm class.
       
    36   ///  
       
    37   /// It defines all computational operations and constants which are
       
    38   /// used in the belmann ford algorithm. The default implementation
       
    39   /// is based on the numeric_limits class. If the numeric type does not
       
    40   /// have infinity value then the maximum value is used as extremal
       
    41   /// infinity value.
       
    42   template <
       
    43     typename Value, 
       
    44     bool has_infinity = std::numeric_limits<Value>::has_infinity>
       
    45   struct BelmannFordDefaultOperationTraits {
       
    46     /// \brief Gives back the zero value of the type.
       
    47     static Value zero() {
       
    48       return static_cast<Value>(0);
       
    49     }
       
    50     /// \brief Gives back the positive infinity value of the type.
       
    51     static Value infinity() {
       
    52       return std::numeric_limits<Value>::infinity();
       
    53     }
       
    54     /// \brief Gives back the sum of the given two elements.
       
    55     static Value plus(const Value& left, const Value& right) {
       
    56       return left + right;
       
    57     }
       
    58     /// \brief Gives back true only if the first value less than the second.
       
    59     static bool less(const Value& left, const Value& right) {
       
    60       return left < right;
       
    61     }
       
    62   };
       
    63 
       
    64   template <typename Value>
       
    65   struct BelmannFordDefaultOperationTraits<Value, false> {
       
    66     static Value zero() {
       
    67       return static_cast<Value>(0);
       
    68     }
       
    69     static Value infinity() {
       
    70       return std::numeric_limits<Value>::max();
       
    71     }
       
    72     static Value plus(const Value& left, const Value& right) {
       
    73       if (left == infinity() || right == infinity()) return infinity();
       
    74       return left + right;
       
    75     }
       
    76     static bool less(const Value& left, const Value& right) {
       
    77       return left < right;
       
    78     }
       
    79   };
       
    80   
       
    81   /// \brief Default traits class of BelmannFord class.
       
    82   ///
       
    83   /// Default traits class of BelmannFord class.
       
    84   /// \param _Graph Graph type.
       
    85   /// \param _LegthMap Type of length map.
       
    86   template<class _Graph, class _LengthMap>
       
    87   struct BelmannFordDefaultTraits {
       
    88     /// The graph type the algorithm runs on. 
       
    89     typedef _Graph Graph;
       
    90 
       
    91     /// \brief The type of the map that stores the edge lengths.
       
    92     ///
       
    93     /// The type of the map that stores the edge lengths.
       
    94     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
       
    95     typedef _LengthMap LengthMap;
       
    96 
       
    97     // The type of the length of the edges.
       
    98     typedef typename _LengthMap::Value Value;
       
    99 
       
   100     /// \brief Operation traits for belmann-ford algorithm.
       
   101     ///
       
   102     /// It defines the infinity type on the given Value type
       
   103     /// and the used operation.
       
   104     /// \see BelmannFordDefaultOperationTraits
       
   105     typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
       
   106  
       
   107     /// \brief The type of the map that stores the last edges of the 
       
   108     /// shortest paths.
       
   109     /// 
       
   110     /// The type of the map that stores the last
       
   111     /// edges of the shortest paths.
       
   112     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
       
   113     ///
       
   114     typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
       
   115 
       
   116     /// \brief Instantiates a PredMap.
       
   117     /// 
       
   118     /// This function instantiates a \ref PredMap. 
       
   119     /// \param G is the graph, to which we would like to define the PredMap.
       
   120     /// \todo The graph alone may be insufficient for the initialization
       
   121     static PredMap *createPredMap(const _Graph& graph) {
       
   122       return new PredMap(graph);
       
   123     }
       
   124 
       
   125     /// \brief The type of the map that stores the dists of the nodes.
       
   126     ///
       
   127     /// The type of the map that stores the dists of the nodes.
       
   128     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
       
   129     ///
       
   130     typedef typename Graph::template NodeMap<typename _LengthMap::Value> 
       
   131     DistMap;
       
   132 
       
   133     /// \brief Instantiates a DistMap.
       
   134     ///
       
   135     /// This function instantiates a \ref DistMap. 
       
   136     /// \param G is the graph, to which we would like to define the 
       
   137     /// \ref DistMap
       
   138     static DistMap *createDistMap(const _Graph& graph) {
       
   139       return new DistMap(graph);
       
   140     }
       
   141 
       
   142   };
       
   143   
       
   144   /// \brief BelmannFord algorithm class.
       
   145   ///
       
   146   /// \ingroup flowalgs
       
   147   /// This class provides an efficient implementation of \c BelmannFord 
       
   148   /// algorithm. The edge lengths are passed to the algorithm using a
       
   149   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
       
   150   /// kind of length.
       
   151   ///
       
   152   /// The type of the length is determined by the
       
   153   /// \ref concept::ReadMap::Value "Value" of the length map.
       
   154   ///
       
   155   /// \param _Graph The graph type the algorithm runs on. The default value
       
   156   /// is \ref ListGraph. The value of _Graph is not used directly by
       
   157   /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
       
   158   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
       
   159   /// edges. The default map type is \ref concept::StaticGraph::EdgeMap 
       
   160   /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly 
       
   161   /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.  
       
   162   /// \param _Traits Traits class to set various data types used by the 
       
   163   /// algorithm.  The default traits class is \ref BelmannFordDefaultTraits
       
   164   /// "BelmannFordDefaultTraits<_Graph,_LengthMap>".  See \ref
       
   165   /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
       
   166   /// class.
       
   167   ///
       
   168   /// \author Balazs Dezso
       
   169 
       
   170   template <typename _Graph=ListGraph,
       
   171 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
       
   172 	    typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
       
   173   class BelmannFord {
       
   174   public:
       
   175     
       
   176     /// \brief \ref Exception for uninitialized parameters.
       
   177     ///
       
   178     /// This error represents problems in the initialization
       
   179     /// of the parameters of the algorithms.
       
   180 
       
   181     class UninitializedParameter : public lemon::UninitializedParameter {
       
   182     public:
       
   183       virtual const char* exceptionName() const {
       
   184 	return "lemon::BelmannFord::UninitializedParameter";
       
   185       }
       
   186     };
       
   187 
       
   188     typedef _Traits Traits;
       
   189     ///The type of the underlying graph.
       
   190     typedef typename _Traits::Graph Graph;
       
   191 
       
   192     typedef typename Graph::Node Node;
       
   193     typedef typename Graph::NodeIt NodeIt;
       
   194     typedef typename Graph::Edge Edge;
       
   195     typedef typename Graph::EdgeIt EdgeIt;
       
   196     
       
   197     /// \brief The type of the length of the edges.
       
   198     typedef typename _Traits::LengthMap::Value Value;
       
   199     /// \brief The type of the map that stores the edge lengths.
       
   200     typedef typename _Traits::LengthMap LengthMap;
       
   201     /// \brief The type of the map that stores the last
       
   202     /// edges of the shortest paths.
       
   203     typedef typename _Traits::PredMap PredMap;
       
   204     /// \brief The type of the map that stores the dists of the nodes.
       
   205     typedef typename _Traits::DistMap DistMap;
       
   206     /// \brief The operation traits.
       
   207     typedef typename _Traits::OperationTraits OperationTraits;
       
   208   private:
       
   209     /// Pointer to the underlying graph.
       
   210     const Graph *graph;
       
   211     /// Pointer to the length map
       
   212     const LengthMap *length;
       
   213     ///Pointer to the map of predecessors edges.
       
   214     PredMap *_pred;
       
   215     ///Indicates if \ref _pred is locally allocated (\c true) or not.
       
   216     bool local_pred;
       
   217     ///Pointer to the map of distances.
       
   218     DistMap *_dist;
       
   219     ///Indicates if \ref _dist is locally allocated (\c true) or not.
       
   220     bool local_dist;
       
   221 
       
   222     /// Creates the maps if necessary.
       
   223     void create_maps() {
       
   224       if(!_pred) {
       
   225 	local_pred = true;
       
   226 	_pred = Traits::createPredMap(*graph);
       
   227       }
       
   228       if(!_dist) {
       
   229 	local_dist = true;
       
   230 	_dist = Traits::createDistMap(*graph);
       
   231       }
       
   232     }
       
   233     
       
   234   public :
       
   235  
       
   236     /// \name Named template parameters
       
   237 
       
   238     ///@{
       
   239 
       
   240     template <class T>
       
   241     struct DefPredMapTraits : public Traits {
       
   242       typedef T PredMap;
       
   243       static PredMap *createPredMap(const Graph& graph) {
       
   244 	throw UninitializedParameter();
       
   245       }
       
   246     };
       
   247 
       
   248     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
       
   249     /// type
       
   250     /// \ref named-templ-param "Named parameter" for setting PredMap type
       
   251     ///
       
   252     template <class T>
       
   253     class DefPredMap 
       
   254       : public BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > {};
       
   255     
       
   256     template <class T>
       
   257     struct DefDistMapTraits : public Traits {
       
   258       typedef T DistMap;
       
   259       static DistMap *createDistMap(const Graph& graph) {
       
   260 	throw UninitializedParameter();
       
   261       }
       
   262     };
       
   263 
       
   264     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
       
   265     /// type
       
   266     ///
       
   267     /// \ref named-templ-param "Named parameter" for setting DistMap type
       
   268     ///
       
   269     template <class T>
       
   270     class DefDistMap 
       
   271       : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {};
       
   272     
       
   273     template <class T>
       
   274     struct DefOperationTraitsTraits : public Traits {
       
   275       typedef T OperationTraits;
       
   276     };
       
   277     
       
   278     /// \brief \ref named-templ-param "Named parameter" for setting 
       
   279     /// OperationTraits type
       
   280     ///
       
   281     /// \ref named-templ-param "Named parameter" for setting PredMap type
       
   282     template <class T>
       
   283     class DefOperationTraits
       
   284       : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
       
   285     public:
       
   286       typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
       
   287       BelmannFord;
       
   288     };
       
   289     
       
   290     ///@}
       
   291 
       
   292   public:      
       
   293     
       
   294     /// \brief Constructor.
       
   295     ///
       
   296     /// \param _graph the graph the algorithm will run on.
       
   297     /// \param _length the length map used by the algorithm.
       
   298     BelmannFord(const Graph& _graph, const LengthMap& _length) :
       
   299       graph(&_graph), length(&_length),
       
   300       _pred(0), local_pred(false),
       
   301       _dist(0), local_dist(false) {}
       
   302     
       
   303     ///Destructor.
       
   304     ~BelmannFord() {
       
   305       if(local_pred) delete _pred;
       
   306       if(local_dist) delete _dist;
       
   307     }
       
   308 
       
   309     /// \brief Sets the length map.
       
   310     ///
       
   311     /// Sets the length map.
       
   312     /// \return \c (*this)
       
   313     BelmannFord &lengthMap(const LengthMap &m) {
       
   314       length = &m;
       
   315       return *this;
       
   316     }
       
   317 
       
   318     /// \brief Sets the map storing the predecessor edges.
       
   319     ///
       
   320     /// Sets the map storing the predecessor edges.
       
   321     /// If you don't use this function before calling \ref run(),
       
   322     /// it will allocate one. The destuctor deallocates this
       
   323     /// automatically allocated map, of course.
       
   324     /// \return \c (*this)
       
   325     BelmannFord &predMap(PredMap &m) {
       
   326       if(local_pred) {
       
   327 	delete _pred;
       
   328 	local_pred=false;
       
   329       }
       
   330       _pred = &m;
       
   331       return *this;
       
   332     }
       
   333 
       
   334     /// \brief Sets the map storing the distances calculated by the algorithm.
       
   335     ///
       
   336     /// Sets the map storing the distances calculated by the algorithm.
       
   337     /// If you don't use this function before calling \ref run(),
       
   338     /// it will allocate one. The destuctor deallocates this
       
   339     /// automatically allocated map, of course.
       
   340     /// \return \c (*this)
       
   341     BelmannFord &distMap(DistMap &m) {
       
   342       if(local_dist) {
       
   343 	delete _dist;
       
   344 	local_dist=false;
       
   345       }
       
   346       _dist = &m;
       
   347       return *this;
       
   348     }
       
   349 
       
   350     /// \name Execution control
       
   351     /// The simplest way to execute the algorithm is to use
       
   352     /// one of the member functions called \c run(...).
       
   353     /// \n
       
   354     /// If you need more control on the execution,
       
   355     /// first you must call \ref init(), then you can add several source nodes
       
   356     /// with \ref addSource().
       
   357     /// Finally \ref start() will perform the actual path
       
   358     /// computation.
       
   359 
       
   360     ///@{
       
   361 
       
   362     /// \brief Initializes the internal data structures.
       
   363     /// 
       
   364     /// Initializes the internal data structures.
       
   365     void init() {
       
   366       create_maps();
       
   367       for (NodeIt it(*graph); it != INVALID; ++it) {
       
   368 	_pred->set(it, INVALID);
       
   369 	_dist->set(it, OperationTraits::infinity());
       
   370       }
       
   371     }
       
   372     
       
   373     /// \brief Adds a new source node.
       
   374     ///
       
   375     /// The optional second parameter is the initial distance of the node.
       
   376     /// It just sets the distance of the node to the given value.
       
   377     void addSource(Node source, Value dst = OperationTraits::zero()) {
       
   378       _dist->set(source, dst);
       
   379     }
       
   380 
       
   381     /// \brief Executes the algorithm.
       
   382     ///
       
   383     /// \pre init() must be called and at least one node should be added
       
   384     /// with addSource() before using this function.
       
   385     ///
       
   386     /// This method runs the %BelmannFord algorithm from the root node(s)
       
   387     /// in order to compute the shortest path to each node. The algorithm 
       
   388     /// computes 
       
   389     /// - The shortest path tree.
       
   390     /// - The distance of each node from the root(s).
       
   391     void start() {
       
   392       bool ready = false;
       
   393       while (!ready) {
       
   394 	ready = true;
       
   395 	for (EdgeIt it(*graph); it != INVALID; ++it) {
       
   396 	  Node source = graph->source(it);
       
   397 	  Node target = graph->target(it);
       
   398 	  Value relaxed = 
       
   399 	    OperationTraits::plus((*_dist)[source], (*length)[it]);
       
   400 	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
       
   401 	    _pred->set(target, it);
       
   402 	    _dist->set(target, relaxed);
       
   403 	    ready = false; 
       
   404 	  }
       
   405 	}
       
   406       }
       
   407     }
       
   408     
       
   409     /// \brief Runs %BelmannFord algorithm from node \c s.
       
   410     ///    
       
   411     /// This method runs the %BelmannFord algorithm from a root node \c s
       
   412     /// in order to compute the shortest path to each node. The algorithm 
       
   413     /// computes
       
   414     /// - The shortest path tree.
       
   415     /// - The distance of each node from the root.
       
   416     ///
       
   417     /// \note d.run(s) is just a shortcut of the following code.
       
   418     /// \code
       
   419     ///  d.init();
       
   420     ///  d.addSource(s);
       
   421     ///  d.start();
       
   422     /// \endcode
       
   423     void run(Node s) {
       
   424       init();
       
   425       addSource(s);
       
   426       start();
       
   427     }
       
   428     
       
   429     ///@}
       
   430 
       
   431     /// \name Query Functions
       
   432     /// The result of the %BelmannFord algorithm can be obtained using these
       
   433     /// functions.\n
       
   434     /// Before the use of these functions,
       
   435     /// either run() or start() must be called.
       
   436     
       
   437     ///@{
       
   438 
       
   439     /// \brief Copies the shortest path to \c t into \c p
       
   440     ///    
       
   441     /// This function copies the shortest path to \c t into \c p.
       
   442     /// If it \c t is a source itself or unreachable, then it does not
       
   443     /// alter \c p.
       
   444     /// \todo Is it the right way to handle unreachable nodes?
       
   445     /// \return Returns \c true if a path to \c t was actually copied to \c p,
       
   446     /// \c false otherwise.
       
   447     /// \sa DirPath
       
   448     template <typename Path>
       
   449     bool getPath(Path &p, Node t) {
       
   450       if(reached(t)) {
       
   451 	p.clear();
       
   452 	typename Path::Builder b(p);
       
   453 	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
       
   454 	  b.pushFront(pred(t));
       
   455 	b.commit();
       
   456 	return true;
       
   457       }
       
   458       return false;
       
   459     }
       
   460 	  
       
   461     /// \brief The distance of a node from the root.
       
   462     ///
       
   463     /// Returns the distance of a node from the root.
       
   464     /// \pre \ref run() must be called before using this function.
       
   465     /// \warning If node \c v in unreachable from the root the return value
       
   466     /// of this funcion is undefined.
       
   467     Value dist(Node v) const { return (*_dist)[v]; }
       
   468 
       
   469     /// \brief Returns the 'previous edge' of the shortest path tree.
       
   470     ///
       
   471     /// For a node \c v it returns the 'previous edge' of the shortest path 
       
   472     /// tree, i.e. it returns the last edge of a shortest path from the root 
       
   473     /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
       
   474     /// if \c v=s. The shortest path tree used here is equal to the shortest 
       
   475     /// path tree used in \ref predNode(). 
       
   476     /// \pre \ref run() must be called before using
       
   477     /// this function.
       
   478     /// \todo predEdge could be a better name.
       
   479     Edge pred(Node v) const { return (*_pred)[v]; }
       
   480 
       
   481     /// \brief Returns the 'previous node' of the shortest path tree.
       
   482     ///
       
   483     /// For a node \c v it returns the 'previous node' of the shortest path 
       
   484     /// tree, i.e. it returns the last but one node from a shortest path from 
       
   485     /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
       
   486     /// or if \c v=s. The shortest path tree used here is equal to the 
       
   487     /// shortest path tree used in \ref pred().  \pre \ref run() must be 
       
   488     /// called before using this function.
       
   489     Node predNode(Node v) const { 
       
   490       return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); 
       
   491     }
       
   492     
       
   493     /// \brief Returns a reference to the NodeMap of distances.
       
   494     ///
       
   495     /// Returns a reference to the NodeMap of distances. \pre \ref run() must
       
   496     /// be called before using this function.
       
   497     const DistMap &distMap() const { return *_dist;}
       
   498  
       
   499     /// \brief Returns a reference to the shortest path tree map.
       
   500     ///
       
   501     /// Returns a reference to the NodeMap of the edges of the
       
   502     /// shortest path tree.
       
   503     /// \pre \ref run() must be called before using this function.
       
   504     const PredMap &predMap() const { return *_pred; }
       
   505  
       
   506     /// \brief Checks if a node is reachable from the root.
       
   507     ///
       
   508     /// Returns \c true if \c v is reachable from the root.
       
   509     /// \pre \ref run() must be called before using this function.
       
   510     ///
       
   511     bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
       
   512     
       
   513     ///@}
       
   514   };
       
   515  
       
   516   /// \brief Default traits class of BelmannFord function.
       
   517   ///
       
   518   /// Default traits class of BelmannFord function.
       
   519   /// \param _Graph Graph type.
       
   520   /// \param _LengthMap Type of length map.
       
   521   template <typename _Graph, typename _LengthMap>
       
   522   struct BelmannFordWizardDefaultTraits {
       
   523     /// \brief The graph type the algorithm runs on. 
       
   524     typedef _Graph Graph;
       
   525 
       
   526     /// \brief The type of the map that stores the edge lengths.
       
   527     ///
       
   528     /// The type of the map that stores the edge lengths.
       
   529     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
       
   530     typedef _LengthMap LengthMap;
       
   531 
       
   532     /// \brief The value type of the length map.
       
   533     typedef typename _LengthMap::Value Value;
       
   534 
       
   535     /// \brief Operation traits for belmann-ford algorithm.
       
   536     ///
       
   537     /// It defines the infinity type on the given Value type
       
   538     /// and the used operation.
       
   539     /// \see BelmannFordDefaultOperationTraits
       
   540     typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
       
   541 
       
   542     /// \brief The type of the map that stores the last
       
   543     /// edges of the shortest paths.
       
   544     /// 
       
   545     /// The type of the map that stores the last
       
   546     /// edges of the shortest paths.
       
   547     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
       
   548     typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
       
   549 
       
   550     /// \brief Instantiates a PredMap.
       
   551     /// 
       
   552     /// This function instantiates a \ref PredMap. 
       
   553     static PredMap *createPredMap(const _Graph &) {
       
   554       return new PredMap();
       
   555     }
       
   556     /// \brief The type of the map that stores the dists of the nodes.
       
   557     ///
       
   558     /// The type of the map that stores the dists of the nodes.
       
   559     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
       
   560     typedef NullMap<typename Graph::Node, Value> DistMap;
       
   561     /// \brief Instantiates a DistMap.
       
   562     ///
       
   563     /// This function instantiates a \ref DistMap. 
       
   564     static DistMap *createDistMap(const _Graph &) {
       
   565       return new DistMap();
       
   566     }
       
   567   };
       
   568   
       
   569   /// \brief Default traits used by \ref BelmannFordWizard
       
   570   ///
       
   571   /// To make it easier to use BelmannFord algorithm
       
   572   /// we have created a wizard class.
       
   573   /// This \ref BelmannFordWizard class needs default traits,
       
   574   /// as well as the \ref BelmannFord class.
       
   575   /// The \ref BelmannFordWizardBase is a class to be the default traits of the
       
   576   /// \ref BelmannFordWizard class.
       
   577   /// \todo More named parameters are required...
       
   578   template<class _Graph,class _LengthMap>
       
   579   class BelmannFordWizardBase 
       
   580     : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
       
   581 
       
   582     typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
       
   583   protected:
       
   584     /// Type of the nodes in the graph.
       
   585     typedef typename Base::Graph::Node Node;
       
   586 
       
   587     /// Pointer to the underlying graph.
       
   588     void *_graph;
       
   589     /// Pointer to the length map
       
   590     void *_length;
       
   591     ///Pointer to the map of predecessors edges.
       
   592     void *_pred;
       
   593     ///Pointer to the map of distances.
       
   594     void *_dist;
       
   595     ///Pointer to the source node.
       
   596     Node _source;
       
   597 
       
   598     public:
       
   599     /// Constructor.
       
   600     
       
   601     /// This constructor does not require parameters, therefore it initiates
       
   602     /// all of the attributes to default values (0, INVALID).
       
   603     BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
       
   604 			   _dist(0), _source(INVALID) {}
       
   605 
       
   606     /// Constructor.
       
   607     
       
   608     /// This constructor requires some parameters,
       
   609     /// listed in the parameters list.
       
   610     /// Others are initiated to 0.
       
   611     /// \param graph is the initial value of  \ref _graph
       
   612     /// \param length is the initial value of  \ref _length
       
   613     /// \param source is the initial value of  \ref _source
       
   614     BelmannFordWizardBase(const _Graph& graph, 
       
   615 			  const _LengthMap& length, 
       
   616 			  Node source = INVALID) :
       
   617       _graph((void *)&graph), _length((void *)&length), _pred(0),
       
   618       _dist(0), _source(source) {}
       
   619 
       
   620   };
       
   621   
       
   622   /// A class to make the usage of BelmannFord algorithm easier
       
   623 
       
   624   /// This class is created to make it easier to use BelmannFord algorithm.
       
   625   /// It uses the functions and features of the plain \ref BelmannFord,
       
   626   /// but it is much simpler to use it.
       
   627   ///
       
   628   /// Simplicity means that the way to change the types defined
       
   629   /// in the traits class is based on functions that returns the new class
       
   630   /// and not on templatable built-in classes.
       
   631   /// When using the plain \ref BelmannFord
       
   632   /// the new class with the modified type comes from
       
   633   /// the original class by using the ::
       
   634   /// operator. In the case of \ref BelmannFordWizard only
       
   635   /// a function have to be called and it will
       
   636   /// return the needed class.
       
   637   ///
       
   638   /// It does not have own \ref run method. When its \ref run method is called
       
   639   /// it initiates a plain \ref BelmannFord class, and calls the \ref 
       
   640   /// BelmannFord::run method of it.
       
   641   template<class _Traits>
       
   642   class BelmannFordWizard : public _Traits {
       
   643     typedef _Traits Base;
       
   644 
       
   645     ///The type of the underlying graph.
       
   646     typedef typename _Traits::Graph Graph;
       
   647 
       
   648     typedef typename Graph::Node Node;
       
   649     typedef typename Graph::NodeIt NodeIt;
       
   650     typedef typename Graph::Edge Edge;
       
   651     typedef typename Graph::OutEdgeIt EdgeIt;
       
   652     
       
   653     ///The type of the map that stores the edge lengths.
       
   654     typedef typename _Traits::LengthMap LengthMap;
       
   655 
       
   656     ///The type of the length of the edges.
       
   657     typedef typename LengthMap::Value Value;
       
   658 
       
   659     ///\brief The type of the map that stores the last
       
   660     ///edges of the shortest paths.
       
   661     typedef typename _Traits::PredMap PredMap;
       
   662 
       
   663     ///The type of the map that stores the dists of the nodes.
       
   664     typedef typename _Traits::DistMap DistMap;
       
   665 
       
   666   public:
       
   667     /// Constructor.
       
   668     BelmannFordWizard() : _Traits() {}
       
   669 
       
   670     /// \brief Constructor that requires parameters.
       
   671     ///
       
   672     /// Constructor that requires parameters.
       
   673     /// These parameters will be the default values for the traits class.
       
   674     BelmannFordWizard(const Graph& graph, const LengthMap& length, 
       
   675 		      Node source = INVALID) 
       
   676       : _Traits(graph, length, source) {}
       
   677 
       
   678     /// \brief Copy constructor
       
   679     BelmannFordWizard(const _Traits &b) : _Traits(b) {}
       
   680 
       
   681     ~BelmannFordWizard() {}
       
   682 
       
   683     /// \brief Runs BelmannFord algorithm from a given node.
       
   684     ///    
       
   685     /// Runs BelmannFord algorithm from a given node.
       
   686     /// The node can be given by the \ref source function.
       
   687     void run() {
       
   688       if(Base::_source == INVALID) throw UninitializedParameter();
       
   689       BelmannFord<Graph,LengthMap,_Traits> 
       
   690 	bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
       
   691       if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
       
   692       if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
       
   693       bf.run(Base::_source);
       
   694     }
       
   695 
       
   696     /// \brief Runs BelmannFord algorithm from the given node.
       
   697     ///
       
   698     /// Runs BelmannFord algorithm from the given node.
       
   699     /// \param s is the given source.
       
   700     void run(Node source) {
       
   701       Base::_source = source;
       
   702       run();
       
   703     }
       
   704 
       
   705     template<class T>
       
   706     struct DefPredMapBase : public Base {
       
   707       typedef T PredMap;
       
   708       static PredMap *createPredMap(const Graph &) { return 0; };
       
   709       DefPredMapBase(const _Traits &b) : _Traits(b) {}
       
   710     };
       
   711     
       
   712     ///\brief \ref named-templ-param "Named parameter"
       
   713     ///function for setting PredMap type
       
   714     ///
       
   715     /// \ref named-templ-param "Named parameter"
       
   716     ///function for setting PredMap type
       
   717     ///
       
   718     template<class T>
       
   719     BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) 
       
   720     {
       
   721       Base::_pred=(void *)&t;
       
   722       return BelmannFordWizard<DefPredMapBase<T> >(*this);
       
   723     }
       
   724     
       
   725     template<class T>
       
   726     struct DefDistMapBase : public Base {
       
   727       typedef T DistMap;
       
   728       static DistMap *createDistMap(const Graph &) { return 0; };
       
   729       DefDistMapBase(const _Traits &b) : _Traits(b) {}
       
   730     };
       
   731     
       
   732     ///\brief \ref named-templ-param "Named parameter"
       
   733     ///function for setting DistMap type
       
   734     ///
       
   735     /// \ref named-templ-param "Named parameter"
       
   736     ///function for setting DistMap type
       
   737     ///
       
   738     template<class T>
       
   739     BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
       
   740       Base::_dist=(void *)&t;
       
   741       return BelmannFordWizard<DefDistMapBase<T> >(*this);
       
   742     }
       
   743     
       
   744     /// \brief Sets the source node, from which the BelmannFord algorithm runs.
       
   745     ///
       
   746     /// Sets the source node, from which the BelmannFord algorithm runs.
       
   747     /// \param s is the source node.
       
   748     BelmannFordWizard<_Traits>& source(Node source) {
       
   749       Base::_source = source;
       
   750       return *this;
       
   751     }
       
   752     
       
   753   };
       
   754   
       
   755   /// \brief Function type interface for BelmannFord algorithm.
       
   756   ///
       
   757   /// \ingroup flowalgs
       
   758   /// Function type interface for BelmannFord algorithm.
       
   759   ///
       
   760   /// This function also has several \ref named-templ-func-param 
       
   761   /// "named parameters", they are declared as the members of class 
       
   762   /// \ref BelmannFordWizard.
       
   763   /// The following
       
   764   /// example shows how to use these parameters.
       
   765   /// \code
       
   766   /// belmannford(g,length,source).predMap(preds).run();
       
   767   /// \endcode
       
   768   /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
       
   769   /// to the end of the parameter list.
       
   770   /// \sa BelmannFordWizard
       
   771   /// \sa BelmannFord
       
   772   template<class _Graph, class _LengthMap>
       
   773   BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
       
   774   belmannFord(const _Graph& graph,
       
   775 	      const _LengthMap& length, 
       
   776 	      typename _Graph::Node source = INVALID) {
       
   777     return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
       
   778       (graph, length, source);
       
   779   }
       
   780 
       
   781 } //END OF NAMESPACE LEMON
       
   782 
       
   783 #endif
       
   784