src/work/jacint/fib_heap.h
changeset 166 abcbdcf36ab2
parent 159 0defa5aa1229
equal deleted inserted replaced
1:bfffe5a181cc -1:000000000000
     1 // -*- C++ -*-
       
     2 /*
       
     3  *template <typename Item, 
       
     4  *          typename Prio, 
       
     5  *          typename ItemIntMap, 
       
     6  *          typename Compare = std::less<Prio> >
       
     7  * 
       
     8  *constructors:
       
     9  *
       
    10  *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
       
    11  *
       
    12  *Member functions:
       
    13  *
       
    14  *int size() : returns the number of elements in the heap
       
    15  *
       
    16  *bool empty() : true iff size()=0
       
    17  *
       
    18  *void set(Item, Prio) : calls push(Item, Prio) if Item is not
       
    19  *     in the heap, and calls decrease/increase(Item, Prio) otherwise
       
    20  *
       
    21  *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
       
    22  *     mustn't be in the heap.
       
    23  *
       
    24  *Item top() : returns the Item with least Prio
       
    25  *
       
    26  *Prio prio() : returns the least Prio
       
    27  *  
       
    28  *Prio get(Item) : returns Prio of Item
       
    29  *
       
    30  *void pop() : deletes the Item with least Prio
       
    31  *
       
    32  *void erase(Item) : deletes Item from the heap if it was already there
       
    33  *
       
    34  *void decrease(Item, P) : decreases prio of Item to P. Item must be in the heap 
       
    35  *     with prio at least P.
       
    36  *
       
    37  *void increase(Item, P) : sets prio of Item to P. 
       
    38  *
       
    39  *
       
    40  *In Fibonacci heaps, increase and erase are not efficient, in case of
       
    41  *many calls to these operations, it is better to use bin_heap.
       
    42  */
       
    43 
       
    44 #ifndef FIB_HEAP_H
       
    45 #define FIB_HEAP_H
       
    46 
       
    47 #include <vector>
       
    48 #include <functional>
       
    49 #include <math.h>
       
    50 
       
    51 namespace hugo {
       
    52   
       
    53   template <typename Item, typename Prio, typename ItemIntMap, 
       
    54     typename Compare = std::less<Prio> >
       
    55  
       
    56   class FibHeap {
       
    57   
       
    58     typedef Prio PrioType;
       
    59     
       
    60     class store;
       
    61     
       
    62     std::vector<store> container;
       
    63     int minimum;
       
    64     bool blank;
       
    65     ItemIntMap &iimap;
       
    66     Compare comp;
       
    67     
       
    68   public :
       
    69     
       
    70     FibHeap(ItemIntMap &_iimap) : minimum(), blank(true), iimap(_iimap) {} 
       
    71     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), 
       
    72       blank(true), iimap(_iimap), comp(_comp) {}
       
    73     
       
    74     
       
    75     int size() const {
       
    76       int s=0;
       
    77       for ( unsigned int i=0; i!=container.size(); ++i )
       
    78 	if ( container[i].in ) ++s;
       
    79       return s; 
       
    80     }
       
    81 
       
    82 
       
    83     bool empty() const { return blank; }
       
    84 
       
    85 
       
    86     void set (Item const it, PrioType const value) {
       
    87       int i=iimap.get(it);
       
    88       if ( i >= 0 && container[i].in ) {
       
    89 	if ( !comp(container[i].prio, value) ) decrease(it, value); 
       
    90 	if ( comp(container[i].prio, value) ) increase(it, value); 
       
    91       } else push(it, value);
       
    92     }
       
    93     
       
    94 
       
    95     void push (Item const it, PrioType const value) {
       
    96       int i=iimap.get(it);      
       
    97       if ( i < 0 ) {
       
    98 	int s=container.size();
       
    99 	iimap.set( it, s );	
       
   100 	store st;
       
   101 	st.name=it;
       
   102 	container.push_back(st);
       
   103 	i=s;
       
   104       }
       
   105       
       
   106       if ( !blank ) {
       
   107 	container[container[minimum].right_neighbor].left_neighbor=i;
       
   108 	container[i].right_neighbor=container[minimum].right_neighbor;
       
   109 	container[minimum].right_neighbor=i;
       
   110 	container[i].left_neighbor=minimum;
       
   111 	if ( !comp( container[minimum].prio, value) ) minimum=i; 
       
   112 	
       
   113       } else {
       
   114 	container[i].right_neighbor=container[i].left_neighbor=i;
       
   115 	minimum=i;	
       
   116 	blank=false;
       
   117       }
       
   118       container[i].prio=value;
       
   119     }
       
   120     
       
   121 
       
   122 
       
   123     Item top() const {
       
   124       if ( !blank ) { 
       
   125 	return container[minimum].name;
       
   126       } else {
       
   127 	return Item();
       
   128       }
       
   129     }
       
   130     
       
   131     
       
   132     PrioType prio() const {
       
   133       if ( !blank ) { 
       
   134 	return container[minimum].prio;
       
   135       } else {
       
   136 	return PrioType();
       
   137       }
       
   138     }
       
   139     
       
   140 
       
   141     const PrioType get(const Item& it) const
       
   142     {
       
   143       int i=iimap.get(it);
       
   144       
       
   145       if ( i >= 0 && container[i].in ) { 
       
   146 	return container[i].prio;
       
   147       } else {
       
   148 	return PrioType();
       
   149       }
       
   150     }
       
   151 
       
   152 
       
   153     void pop() {
       
   154       if ( !blank ) {
       
   155 	
       
   156 	/*The first case is that there are only one root.*/
       
   157 	if ( container[minimum].left_neighbor==minimum ) {
       
   158 	  container[minimum].in=false;
       
   159 	  if ( container[minimum].degree==0 ) blank=true; 
       
   160 	  else { 
       
   161 	    makeroot(container[minimum].child);
       
   162 	    minimum=container[minimum].child;
       
   163 	    balance();
       
   164 	  } 
       
   165        } else {
       
   166 	 int right=container[minimum].right_neighbor;
       
   167 	 unlace(minimum);
       
   168 	 container[minimum].in=false;
       
   169 	 if ( container[minimum].degree > 0 ) {
       
   170 	   int left=container[minimum].left_neighbor;
       
   171 	   int child=container[minimum].child;
       
   172 	   int last_child=container[child].left_neighbor;
       
   173 	   
       
   174 	   container[left].right_neighbor=child;
       
   175 	   container[child].left_neighbor=left;
       
   176 	   container[right].left_neighbor=last_child;
       
   177 	   container[last_child].right_neighbor=right;
       
   178 	   
       
   179 	   makeroot(child);
       
   180 	 }
       
   181 	 minimum=right;
       
   182 	 balance();
       
   183        } // the case where there are more roots
       
   184      } 
       
   185    }
       
   186 
       
   187     
       
   188    void erase (const Item& it) {
       
   189      int i=iimap.get(it);
       
   190      
       
   191      if ( i >= 0 && container[i].in ) { 
       
   192 	
       
   193        if ( container[i].parent!=-1 ) {
       
   194 	 int p=container[i].parent;
       
   195 	 cut(i,p);	    
       
   196 	 cascade(p);
       
   197 	 minimum=i;     //As if its prio would be -infinity
       
   198        }
       
   199        pop();
       
   200      }
       
   201    }
       
   202     
       
   203 
       
   204     void decrease (Item it, PrioType const value) {
       
   205       int i=iimap.get(it);
       
   206       container[i].prio=value;
       
   207       int p=container[i].parent;
       
   208  
       
   209       if ( p!=-1 && comp(value, container[p].prio) ) {
       
   210 	cut(i,p);	    
       
   211 	cascade(p);
       
   212 	if ( comp(value, container[minimum].prio) ) minimum=i; 
       
   213       }
       
   214     }
       
   215    
       
   216 
       
   217     void increase (Item it, PrioType const value) {
       
   218       erase(it);
       
   219       push(it, value);
       
   220     }
       
   221 
       
   222 
       
   223   private:
       
   224     
       
   225     void balance() {      
       
   226     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
       
   227   
       
   228     std::vector<int> A(maxdeg,-1); 
       
   229     
       
   230     /*
       
   231      *Recall that now minimum does not point to the minimum prio element.
       
   232      *We set minimum to this during balance().
       
   233      */
       
   234     int anchor=container[minimum].left_neighbor; 
       
   235     int next=minimum; 
       
   236     bool end=false; 
       
   237     	
       
   238        do {
       
   239 	int active=next;
       
   240 	int d=container[active].degree;
       
   241 	if ( anchor==active ) end=true;
       
   242 	next = container[active].right_neighbor;
       
   243 	if ( !comp(container[minimum].prio, container[active].prio) )
       
   244 	  minimum=active;
       
   245 
       
   246 	while (A[d]!=-1) {
       
   247 	  
       
   248 	  if( comp(container[active].prio, container[A[d]].prio) ) {
       
   249 	    fuse(active,A[d]); 
       
   250 	  } else { 
       
   251 	    fuse(A[d],active);
       
   252 	    active=A[d];
       
   253 	  } 
       
   254 	  A[d]=-1;
       
   255 	  ++d;
       
   256 	}
       
   257 	
       
   258 	A[d]=active;
       
   259        } while ( !end );
       
   260   }
       
   261 
       
   262 
       
   263 
       
   264 
       
   265     /*
       
   266      *All the siblings of a are made roots.
       
   267      */
       
   268     void makeroot (int c)  
       
   269     {
       
   270       int s=c;
       
   271       do {  
       
   272 	container[s].parent=-1;
       
   273 	s=container[s].right_neighbor;
       
   274       } while ( s != c );
       
   275     }
       
   276     
       
   277 
       
   278     void cut (int a, int b) 
       
   279     {    
       
   280 
       
   281       /*
       
   282        *Replacing a from the children of b.
       
   283        */
       
   284       --container[b].degree;
       
   285 
       
   286       if ( container[b].degree !=0 ) {
       
   287       int child=container[b].child;
       
   288       if ( child==a ) 
       
   289 	container[b].child=container[child].right_neighbor;
       
   290       
       
   291       unlace(a);
       
   292 	
       
   293       }
       
   294     
       
   295 
       
   296       /*Lacing i to the roots.*/
       
   297       int right=container[minimum].right_neighbor;
       
   298       container[minimum].right_neighbor=a;
       
   299       container[a].left_neighbor=minimum;
       
   300       container[a].right_neighbor=right;
       
   301       container[right].left_neighbor=a;
       
   302 
       
   303       container[a].parent=-1;
       
   304       container[a].marked=false;
       
   305     }
       
   306 
       
   307 
       
   308     void cascade (int a) 
       
   309     {
       
   310       if ( container[a].parent!=-1 ) {
       
   311 	int p=container[a].parent;
       
   312 	
       
   313 	if ( container[a].marked==false ) container[a].marked=true;
       
   314 	else {
       
   315 	  cut(a,p);
       
   316 	  cascade(p);
       
   317 	}
       
   318       }
       
   319     }
       
   320 
       
   321 
       
   322     void fuse (int a, int b) 
       
   323     {
       
   324       
       
   325       unlace(b);
       
   326 
       
   327       
       
   328       /*Lacing b under a.*/
       
   329       container[b].parent=a;
       
   330 
       
   331       if (container[a].degree==0) {
       
   332 	container[b].left_neighbor=b;
       
   333 	container[b].right_neighbor=b;
       
   334 	container[a].child=b;	
       
   335       } else {
       
   336 	int child=container[a].child;
       
   337 	int last_child=container[child].left_neighbor;
       
   338 	container[child].left_neighbor=b;
       
   339 	container[b].right_neighbor=child;
       
   340 	container[last_child].right_neighbor=b;
       
   341 	container[b].left_neighbor=last_child;
       
   342       }
       
   343 
       
   344       ++container[a].degree;
       
   345       
       
   346       container[b].marked=false;
       
   347     }
       
   348 
       
   349 
       
   350     /*
       
   351      *It is invoked only if a has siblings.
       
   352      */
       
   353 
       
   354     void unlace (int a) {      
       
   355       int leftn=container[a].left_neighbor;
       
   356       int rightn=container[a].right_neighbor;
       
   357       container[leftn].right_neighbor=rightn;
       
   358       container[rightn].left_neighbor=leftn;
       
   359     }
       
   360 
       
   361 
       
   362     class store {
       
   363       friend class FibHeap;
       
   364       
       
   365       Item name;
       
   366       int parent;
       
   367       int left_neighbor;
       
   368       int right_neighbor;
       
   369       int child;
       
   370       int degree;  
       
   371       bool marked;
       
   372       bool in;
       
   373       PrioType prio;
       
   374 
       
   375       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
       
   376     };
       
   377     
       
   378   };
       
   379   
       
   380 } //namespace hugo
       
   381 #endif 
       
   382 
       
   383 
       
   384 
       
   385 
       
   386 
       
   387