src/hugo/max_flow.h
changeset 730 af375858f17c
child 735 2859c45c31dd
equal deleted inserted replaced
-1:000000000000 0:fcd243525ea6
       
     1 // -*- C++ -*-
       
     2 #ifndef HUGO_MAX_FLOW_NO_STACK_H
       
     3 #define HUGO_MAX_FLOW_NO_STACK_H
       
     4 
       
     5 #include <vector>
       
     6 #include <queue>
       
     7 //#include <stack>
       
     8 
       
     9 #include <hugo/graph_wrapper.h>
       
    10 #include <hugo/invalid.h>
       
    11 #include <hugo/maps.h>
       
    12 
       
    13 /// \file
       
    14 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
       
    15 /// \ingroup galgs
       
    16 
       
    17 namespace hugo {
       
    18 
       
    19   /// \addtogroup galgs
       
    20   /// @{                                                                                                                                        
       
    21   ///Maximum flow algorithms class.
       
    22 
       
    23   ///This class provides various algorithms for finding a flow of
       
    24   ///maximum value in a directed graph. The \e source node, the \e
       
    25   ///target node, the \e capacity of the edges and the \e starting \e
       
    26   ///flow value of the edges should be passed to the algorithm through the
       
    27   ///constructor. It is possible to change these quantities using the
       
    28   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
       
    29   ///\ref resetFlow. Before any subsequent runs of any algorithm of
       
    30   ///the class \ref resetFlow should be called. 
       
    31 
       
    32   ///After running an algorithm of the class, the actual flow value 
       
    33   ///can be obtained by calling \ref flowValue(). The minimum
       
    34   ///value cut can be written into a \c node map of \c bools by
       
    35   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
       
    36   ///the inclusionwise minimum and maximum of the minimum value
       
    37   ///cuts, resp.)                                                                                                                               
       
    38   ///\param Graph The directed graph type the algorithm runs on.
       
    39   ///\param Num The number type of the capacities and the flow values.
       
    40   ///\param CapMap The capacity map type.
       
    41   ///\param FlowMap The flow map type.                                                                                                           
       
    42   ///\author Marton Makai, Jacint Szabo 
       
    43   template <typename Graph, typename Num,
       
    44 	    typename CapMap=typename Graph::template EdgeMap<Num>,
       
    45             typename FlowMap=typename Graph::template EdgeMap<Num> >
       
    46   class MaxFlow {
       
    47   protected:
       
    48     typedef typename Graph::Node Node;
       
    49     typedef typename Graph::NodeIt NodeIt;
       
    50     typedef typename Graph::EdgeIt EdgeIt;
       
    51     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    52     typedef typename Graph::InEdgeIt InEdgeIt;
       
    53 
       
    54     //    typedef typename std::vector<std::stack<Node> > VecStack;
       
    55     typedef typename std::vector<Node> VecFirst;
       
    56     typedef typename Graph::template NodeMap<Node> NNMap;
       
    57     typedef typename std::vector<Node> VecNode;
       
    58 
       
    59     const Graph* g;
       
    60     Node s;
       
    61     Node t;
       
    62     const CapMap* capacity;
       
    63     FlowMap* flow;
       
    64     int n;      //the number of nodes of G
       
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
       
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
       
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
       
    68     typedef typename ResGW::Edge ResGWEdge;
       
    69     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
       
    70     typedef typename Graph::template NodeMap<int> ReachedMap;
       
    71 
       
    72 
       
    73     //level works as a bool map in augmenting path algorithms and is
       
    74     //used by bfs for storing reached information.  In preflow, it
       
    75     //shows the levels of nodes.     
       
    76     ReachedMap level;
       
    77 
       
    78     //excess is needed only in preflow
       
    79     typename Graph::template NodeMap<Num> excess;
       
    80 
       
    81     // constants used for heuristics
       
    82     static const int H0=20;
       
    83     static const int H1=1;
       
    84 
       
    85   public:
       
    86 
       
    87     ///Indicates the property of the starting flow.
       
    88 
       
    89     ///Indicates the property of the starting flow. The meanings are as follows:
       
    90     ///- \c ZERO_FLOW: constant zero flow
       
    91     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
       
    92     ///the sum of the out-flows in every node except the \e source and
       
    93     ///the \e target.
       
    94     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
       
    95     ///least the sum of the out-flows in every node except the \e source.
       
    96     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
       
    97     ///set to the constant zero flow in the beginning of the algorithm in this case.
       
    98     enum FlowEnum{
       
    99       ZERO_FLOW,
       
   100       GEN_FLOW,
       
   101       PRE_FLOW,
       
   102       NO_FLOW
       
   103     };
       
   104 
       
   105     enum StatusEnum {
       
   106       AFTER_NOTHING,
       
   107       AFTER_AUGMENTING,
       
   108       AFTER_FAST_AUGMENTING, 
       
   109       AFTER_PRE_FLOW_PHASE_1,      
       
   110       AFTER_PRE_FLOW_PHASE_2
       
   111     };
       
   112 
       
   113     /// Don not needle this flag only if necessary.
       
   114     StatusEnum status;
       
   115 
       
   116 //     int number_of_augmentations;
       
   117 
       
   118 
       
   119 //     template<typename IntMap>
       
   120 //     class TrickyReachedMap {
       
   121 //     protected:
       
   122 //       IntMap* map;
       
   123 //       int* number_of_augmentations;
       
   124 //     public:
       
   125 //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
       
   126 // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
       
   127 //       void set(const Node& n, bool b) {
       
   128 // 	if (b)
       
   129 // 	  map->set(n, *number_of_augmentations);
       
   130 // 	else 
       
   131 // 	  map->set(n, *number_of_augmentations-1);
       
   132 //       }
       
   133 //       bool operator[](const Node& n) const { 
       
   134 // 	return (*map)[n]==*number_of_augmentations; 
       
   135 //       }
       
   136 //     };
       
   137     
       
   138     ///Constructor
       
   139 
       
   140     ///\todo Document, please.
       
   141     ///
       
   142     MaxFlow(const Graph& _G, Node _s, Node _t,
       
   143 		   const CapMap& _capacity, FlowMap& _flow) :
       
   144       g(&_G), s(_s), t(_t), capacity(&_capacity),
       
   145       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
       
   146       status(AFTER_NOTHING) { }
       
   147 
       
   148     ///Runs a maximum flow algorithm.
       
   149 
       
   150     ///Runs a preflow algorithm, which is the fastest maximum flow
       
   151     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
       
   152     ///\pre The starting flow must be
       
   153     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   154     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   155     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   156     /// - any map if \c fe is NO_FLOW.
       
   157     void run(FlowEnum fe=ZERO_FLOW) {
       
   158       preflow(fe);
       
   159     }
       
   160 
       
   161                                                                               
       
   162     ///Runs a preflow algorithm.  
       
   163 
       
   164     ///Runs a preflow algorithm. The preflow algorithms provide the
       
   165     ///fastest way to compute a maximum flow in a directed graph.
       
   166     ///\pre The starting flow must be
       
   167     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   168     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   169     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   170     /// - any map if \c fe is NO_FLOW.
       
   171     ///
       
   172     ///\todo NO_FLOW should be the default flow.
       
   173     void preflow(FlowEnum fe) {
       
   174       preflowPhase1(fe);
       
   175       preflowPhase2();
       
   176     }
       
   177     // Heuristics:
       
   178     //   2 phase
       
   179     //   gap
       
   180     //   list 'level_list' on the nodes on level i implemented by hand
       
   181     //   stack 'active' on the active nodes on level i                                                                                    
       
   182     //   runs heuristic 'highest label' for H1*n relabels
       
   183     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
   184     //   Parameters H0 and H1 are initialized to 20 and 1.
       
   185 
       
   186     ///Runs the first phase of the preflow algorithm.
       
   187 
       
   188     ///The preflow algorithm consists of two phases, this method runs the
       
   189     ///first phase. After the first phase the maximum flow value and a
       
   190     ///minimum value cut can already be computed, though a maximum flow
       
   191     ///is net yet obtained. So after calling this method \ref flowValue
       
   192     ///and \ref actMinCut gives proper results.
       
   193     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
       
   194     ///give minimum value cuts unless calling \ref preflowPhase2.
       
   195     ///\pre The starting flow must be
       
   196     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   197     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   198     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   199     /// - any map if \c fe is NO_FLOW.
       
   200     void preflowPhase1(FlowEnum fe)
       
   201     {
       
   202 
       
   203       int heur0=(int)(H0*n);  //time while running 'bound decrease'
       
   204       int heur1=(int)(H1*n);  //time while running 'highest label'
       
   205       int heur=heur1;         //starting time interval (#of relabels)
       
   206       int numrelabel=0;
       
   207 
       
   208       bool what_heur=1;
       
   209       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
       
   210 
       
   211       bool end=false;
       
   212       //Needed for 'bound decrease', true means no active nodes are above bound
       
   213       //b.
       
   214 
       
   215       int k=n-2;  //bound on the highest level under n containing a node
       
   216       int b=k;    //bound on the highest level under n of an active node
       
   217 
       
   218       VecFirst first(n, INVALID);
       
   219       NNMap next(*g, INVALID); //maybe INVALID is not needed
       
   220       //    VecStack active(n);
       
   221 
       
   222       NNMap left(*g, INVALID);
       
   223       NNMap right(*g, INVALID);
       
   224       VecNode level_list(n,INVALID);
       
   225       //List of the nodes in level i<n, set to n.
       
   226 
       
   227       NodeIt v;
       
   228       for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
       
   229       //setting each node to level n
       
   230 
       
   231       if ( fe == NO_FLOW ) {
       
   232 	EdgeIt e;
       
   233 	for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
       
   234       }
       
   235 
       
   236       switch (fe) { //computing the excess
       
   237       case PRE_FLOW:
       
   238 	{
       
   239 	  NodeIt v;
       
   240 	  for(g->first(v); g->valid(v); g->next(v)) {
       
   241 	    Num exc=0;
       
   242 
       
   243 	    InEdgeIt e;
       
   244 	    for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   245 	    OutEdgeIt f;
       
   246 	    for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   247 
       
   248 	    excess.set(v,exc);
       
   249 
       
   250 	    //putting the active nodes into the stack
       
   251 	    int lev=level[v];
       
   252 	    if ( exc > 0 && lev < n && v != t ) 
       
   253 	      {
       
   254 		next.set(v,first[lev]);
       
   255 		first[lev]=v;
       
   256 	      }
       
   257 	    //	  active[lev].push(v);
       
   258 	  }
       
   259 	  break;
       
   260 	}
       
   261       case GEN_FLOW:
       
   262 	{
       
   263 	  NodeIt v;
       
   264 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
       
   265 
       
   266 	  Num exc=0;
       
   267 	  InEdgeIt e;
       
   268 	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   269 	  OutEdgeIt f;
       
   270 	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   271 	  excess.set(t,exc);
       
   272 	  break;
       
   273 	}
       
   274       case ZERO_FLOW:
       
   275       case NO_FLOW:
       
   276 	{
       
   277 	  NodeIt v;
       
   278 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
       
   279 	  break;
       
   280 	}
       
   281       }
       
   282 
       
   283       preflowPreproc(fe, next, first,/*active*/ level_list, left, right);
       
   284       //End of preprocessing
       
   285 
       
   286 
       
   287       //Push/relabel on the highest level active nodes.
       
   288       while ( true ) {
       
   289 	if ( b == 0 ) {
       
   290 	  if ( !what_heur && !end && k > 0 ) {
       
   291 	    b=k;
       
   292 	    end=true;
       
   293 	  } else break;
       
   294 	}
       
   295 
       
   296 	if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
       
   297 	else {
       
   298 	  end=false;
       
   299 	  Node w=first[b];
       
   300 	  first[b]=next[w];
       
   301 	  /*	Node w=active[b].top();
       
   302 		active[b].pop();*/
       
   303 	  int newlevel=push(w,/*active*/next, first);
       
   304 	  if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list,
       
   305 				       left, right, b, k, what_heur);
       
   306 
       
   307 	  ++numrelabel;
       
   308 	  if ( numrelabel >= heur ) {
       
   309 	    numrelabel=0;
       
   310 	    if ( what_heur ) {
       
   311 	      what_heur=0;
       
   312 	      heur=heur0;
       
   313 	      end=false;
       
   314 	    } else {
       
   315 	      what_heur=1;
       
   316 	      heur=heur1;
       
   317 	      b=k;
       
   318 	    }
       
   319 	  }
       
   320 	}
       
   321       }
       
   322 
       
   323       status=AFTER_PRE_FLOW_PHASE_1;
       
   324     }
       
   325 
       
   326 
       
   327     ///Runs the second phase of the preflow algorithm.
       
   328 
       
   329     ///The preflow algorithm consists of two phases, this method runs
       
   330     ///the second phase. After calling \ref preflowPhase1 and then
       
   331     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
       
   332     ///\ref minMinCut and \ref maxMinCut give proper results.
       
   333     ///\pre \ref preflowPhase1 must be called before.
       
   334     void preflowPhase2()
       
   335     {
       
   336 
       
   337       int k=n-2;  //bound on the highest level under n containing a node
       
   338       int b=k;    //bound on the highest level under n of an active node
       
   339 
       
   340     
       
   341       VecFirst first(n, INVALID);
       
   342       NNMap next(*g, INVALID); //maybe INVALID is not needed
       
   343       //    VecStack active(n);
       
   344       level.set(s,0);
       
   345       std::queue<Node> bfs_queue;
       
   346       bfs_queue.push(s);
       
   347 
       
   348       while (!bfs_queue.empty()) {
       
   349 
       
   350 	Node v=bfs_queue.front();
       
   351 	bfs_queue.pop();
       
   352 	int l=level[v]+1;
       
   353 
       
   354 	InEdgeIt e;
       
   355 	for(g->first(e,v); g->valid(e); g->next(e)) {
       
   356 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   357 	  Node u=g->tail(e);
       
   358 	  if ( level[u] >= n ) {
       
   359 	    bfs_queue.push(u);
       
   360 	    level.set(u, l);
       
   361 	    if ( excess[u] > 0 ) {
       
   362 	      next.set(u,first[l]);
       
   363 	      first[l]=u;
       
   364 	      //active[l].push(u);
       
   365 	    }
       
   366 	  }
       
   367 	}
       
   368 
       
   369 	OutEdgeIt f;
       
   370 	for(g->first(f,v); g->valid(f); g->next(f)) {
       
   371 	  if ( 0 >= (*flow)[f] ) continue;
       
   372 	  Node u=g->head(f);
       
   373 	  if ( level[u] >= n ) {
       
   374 	    bfs_queue.push(u);
       
   375 	    level.set(u, l);
       
   376 	    if ( excess[u] > 0 ) {
       
   377 	      next.set(u,first[l]);
       
   378 	      first[l]=u;
       
   379 	      //active[l].push(u);
       
   380 	    }
       
   381 	  }
       
   382 	}
       
   383       }
       
   384       b=n-2;
       
   385 
       
   386       while ( true ) {
       
   387 
       
   388 	if ( b == 0 ) break;
       
   389 
       
   390 	if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
       
   391 	else {
       
   392 
       
   393 	  Node w=first[b];
       
   394 	  first[b]=next[w];
       
   395 	  /*	Node w=active[b].top();
       
   396 		active[b].pop();*/
       
   397 	  int newlevel=push(w,next, first/*active*/);
       
   398 
       
   399 	  //relabel
       
   400 	  if ( excess[w] > 0 ) {
       
   401 	    level.set(w,++newlevel);
       
   402 	    next.set(w,first[newlevel]);
       
   403 	    first[newlevel]=w;
       
   404 	    //active[newlevel].push(w);
       
   405 	    b=newlevel;
       
   406 	  }
       
   407 	}  // if stack[b] is nonempty
       
   408       } // while(true)
       
   409 
       
   410       status=AFTER_PRE_FLOW_PHASE_2;
       
   411     }
       
   412 
       
   413 
       
   414     /// Returns the maximum value of a flow.
       
   415 
       
   416     /// Returns the maximum value of a flow, by counting the 
       
   417     /// over-flow of the target node \ref t.
       
   418     /// It can be called already after running \ref preflowPhase1.
       
   419     Num flowValue() const {
       
   420       Num a=0;
       
   421       for(InEdgeIt e(*g,t);g->valid(e);G.next(e)) a+=(*flow)[e];
       
   422       for(OutEdgeIt e(*g,t);g->valid(e);G.next(e)) a-=(*flow)[e];
       
   423 
       
   424       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
       
   425     }
       
   426 
       
   427     ///Returns a minimum value cut after calling \ref preflowPhase1.
       
   428 
       
   429     ///After the first phase of the preflow algorithm the maximum flow
       
   430     ///value and a minimum value cut can already be computed. This
       
   431     ///method can be called after running \ref preflowPhase1 for
       
   432     ///obtaining a minimum value cut.
       
   433     /// \warning Gives proper result only right after calling \ref
       
   434     /// preflowPhase1.
       
   435     /// \todo We have to make some status variable which shows the
       
   436     /// actual state
       
   437     /// of the class. This enables us to determine which methods are valid
       
   438     /// for MinCut computation
       
   439     template<typename _CutMap>
       
   440     void actMinCut(_CutMap& M) const {
       
   441       NodeIt v;
       
   442       switch (status) {
       
   443       case AFTER_PRE_FLOW_PHASE_1:
       
   444 	for(g->first(v); g->valid(v); g->next(v)) {
       
   445 	  if (level[v] < n) {
       
   446 	    M.set(v, false);
       
   447 	  } else {
       
   448 	    M.set(v, true);
       
   449 	  }
       
   450 	}
       
   451 	break;
       
   452       case AFTER_PRE_FLOW_PHASE_2:
       
   453       case AFTER_NOTHING:
       
   454 	minMinCut(M);
       
   455 	break;
       
   456       case AFTER_AUGMENTING:
       
   457 	for(g->first(v); g->valid(v); g->next(v)) {
       
   458 	  if (level[v]) {
       
   459 	    M.set(v, true);
       
   460 	  } else {
       
   461 	    M.set(v, false);
       
   462 	  }
       
   463 	}
       
   464 	break;
       
   465       case AFTER_FAST_AUGMENTING:
       
   466 	for(g->first(v); g->valid(v); g->next(v)) {
       
   467 	  if (level[v]==number_of_augmentations) {
       
   468 	    M.set(v, true);
       
   469 	  } else {
       
   470 	    M.set(v, false);
       
   471 	  }
       
   472 	}
       
   473 	break;
       
   474       }
       
   475     }
       
   476 
       
   477     ///Returns the inclusionwise minimum of the minimum value cuts.
       
   478 
       
   479     ///Sets \c M to the characteristic vector of the minimum value cut
       
   480     ///which is inclusionwise minimum. It is computed by processing
       
   481     ///a bfs from the source node \c s in the residual graph.
       
   482     ///\pre M should be a node map of bools initialized to false.
       
   483     ///\pre \c flow must be a maximum flow.
       
   484     template<typename _CutMap>
       
   485     void minMinCut(_CutMap& M) const {
       
   486       std::queue<Node> queue;
       
   487 
       
   488       M.set(s,true);
       
   489       queue.push(s);
       
   490 
       
   491       while (!queue.empty()) {
       
   492         Node w=queue.front();
       
   493 	queue.pop();
       
   494 
       
   495 	OutEdgeIt e;
       
   496 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   497 	  Node v=g->head(e);
       
   498 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   499 	    queue.push(v);
       
   500 	    M.set(v, true);
       
   501 	  }
       
   502 	}
       
   503 
       
   504 	InEdgeIt f;
       
   505 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   506 	  Node v=g->tail(f);
       
   507 	  if (!M[v] && (*flow)[f] > 0 ) {
       
   508 	    queue.push(v);
       
   509 	    M.set(v, true);
       
   510 	  }
       
   511 	}
       
   512       }
       
   513     }
       
   514 
       
   515     ///Returns the inclusionwise maximum of the minimum value cuts.
       
   516 
       
   517     ///Sets \c M to the characteristic vector of the minimum value cut
       
   518     ///which is inclusionwise maximum. It is computed by processing a
       
   519     ///backward bfs from the target node \c t in the residual graph.
       
   520     ///\pre M should be a node map of bools initialized to false.
       
   521     ///\pre \c flow must be a maximum flow. 
       
   522     template<typename _CutMap>
       
   523     void maxMinCut(_CutMap& M) const {
       
   524 
       
   525       NodeIt v;
       
   526       for(g->first(v) ; g->valid(v); g->next(v)) {
       
   527 	M.set(v, true);
       
   528       }
       
   529 
       
   530       std::queue<Node> queue;
       
   531 
       
   532       M.set(t,false);
       
   533       queue.push(t);
       
   534 
       
   535       while (!queue.empty()) {
       
   536         Node w=queue.front();
       
   537 	queue.pop();
       
   538 
       
   539 	InEdgeIt e;
       
   540 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   541 	  Node v=g->tail(e);
       
   542 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   543 	    queue.push(v);
       
   544 	    M.set(v, false);
       
   545 	  }
       
   546 	}
       
   547 
       
   548 	OutEdgeIt f;
       
   549 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   550 	  Node v=g->head(f);
       
   551 	  if (M[v] && (*flow)[f] > 0 ) {
       
   552 	    queue.push(v);
       
   553 	    M.set(v, false);
       
   554 	  }
       
   555 	}
       
   556       }
       
   557     }
       
   558 
       
   559     ///Returns a minimum value cut.
       
   560 
       
   561     ///Sets \c M to the characteristic vector of a minimum value cut.
       
   562     ///\pre M should be a node map of bools initialized to false.
       
   563     ///\pre \c flow must be a maximum flow.    
       
   564     template<typename CutMap>
       
   565     void minCut(CutMap& M) const { minMinCut(M); }
       
   566 
       
   567     ///Resets the source node to \c _s.
       
   568 
       
   569     ///Resets the source node to \c _s.
       
   570     /// 
       
   571     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
       
   572 
       
   573     ///Resets the target node to \c _t.
       
   574 
       
   575     ///Resets the target node to \c _t.
       
   576     ///
       
   577     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
       
   578 
       
   579     /// Resets the edge map of the capacities to _cap.
       
   580 
       
   581     /// Resets the edge map of the capacities to _cap.
       
   582     /// 
       
   583     void resetCap(const CapMap& _cap)
       
   584     { capacity=&_cap; status=AFTER_NOTHING; }
       
   585 
       
   586     /// Resets the edge map of the flows to _flow.
       
   587 
       
   588     /// Resets the edge map of the flows to _flow.
       
   589     /// 
       
   590     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
       
   591 
       
   592 
       
   593   private:
       
   594 
       
   595     int push(Node w, NNMap& next, VecFirst& first) {
       
   596 
       
   597       int lev=level[w];
       
   598       Num exc=excess[w];
       
   599       int newlevel=n;       //bound on the next level of w
       
   600 
       
   601       OutEdgeIt e;
       
   602       for(g->first(e,w); g->valid(e); g->next(e)) {
       
   603 
       
   604 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
       
   605 	Node v=g->head(e);
       
   606 
       
   607 	if( lev > level[v] ) { //Push is allowed now
       
   608 
       
   609 	  if ( excess[v]<=0 && v!=t && v!=s ) {
       
   610 	    next.set(v,first[level[v]]);
       
   611 	    first[level[v]]=v;
       
   612 	    //	    int lev_v=level[v];
       
   613 	    //active[lev_v].push(v);
       
   614 	  }
       
   615 
       
   616 	  Num cap=(*capacity)[e];
       
   617 	  Num flo=(*flow)[e];
       
   618 	  Num remcap=cap-flo;
       
   619 
       
   620 	  if ( remcap >= exc ) { //A nonsaturating push.
       
   621 
       
   622 	    flow->set(e, flo+exc);
       
   623 	    excess.set(v, excess[v]+exc);
       
   624 	    exc=0;
       
   625 	    break;
       
   626 
       
   627 	  } else { //A saturating push.
       
   628 	    flow->set(e, cap);
       
   629 	    excess.set(v, excess[v]+remcap);
       
   630 	    exc-=remcap;
       
   631 	  }
       
   632 	} else if ( newlevel > level[v] ) newlevel = level[v];
       
   633       } //for out edges wv
       
   634 
       
   635       if ( exc > 0 ) {
       
   636 	InEdgeIt e;
       
   637 	for(g->first(e,w); g->valid(e); g->next(e)) {
       
   638 
       
   639 	  if( (*flow)[e] <= 0 ) continue;
       
   640 	  Node v=g->tail(e);
       
   641 
       
   642 	  if( lev > level[v] ) { //Push is allowed now
       
   643 
       
   644 	    if ( excess[v]<=0 && v!=t && v!=s ) {
       
   645 	      next.set(v,first[level[v]]);
       
   646 	      first[level[v]]=v;
       
   647 	      //int lev_v=level[v];
       
   648 	      //active[lev_v].push(v);
       
   649 	    }
       
   650 
       
   651 	    Num flo=(*flow)[e];
       
   652 
       
   653 	    if ( flo >= exc ) { //A nonsaturating push.
       
   654 
       
   655 	      flow->set(e, flo-exc);
       
   656 	      excess.set(v, excess[v]+exc);
       
   657 	      exc=0;
       
   658 	      break;
       
   659 	    } else {  //A saturating push.
       
   660 
       
   661 	      excess.set(v, excess[v]+flo);
       
   662 	      exc-=flo;
       
   663 	      flow->set(e,0);
       
   664 	    }
       
   665 	  } else if ( newlevel > level[v] ) newlevel = level[v];
       
   666 	} //for in edges vw
       
   667 
       
   668       } // if w still has excess after the out edge for cycle
       
   669 
       
   670       excess.set(w, exc);
       
   671 
       
   672       return newlevel;
       
   673     }
       
   674 
       
   675 
       
   676     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
       
   677 			VecNode& level_list, NNMap& left, NNMap& right)
       
   678     {
       
   679       std::queue<Node> bfs_queue;
       
   680 
       
   681       switch (fe) {
       
   682       case NO_FLOW:   //flow is already set to const zero in this case
       
   683       case ZERO_FLOW:
       
   684 	{
       
   685 	  //Reverse_bfs from t, to find the starting level.
       
   686 	  level.set(t,0);
       
   687 	  bfs_queue.push(t);
       
   688 
       
   689 	  while (!bfs_queue.empty()) {
       
   690 
       
   691 	    Node v=bfs_queue.front();
       
   692 	    bfs_queue.pop();
       
   693 	    int l=level[v]+1;
       
   694 
       
   695 	    InEdgeIt e;
       
   696 	    for(g->first(e,v); g->valid(e); g->next(e)) {
       
   697 	      Node w=g->tail(e);
       
   698 	      if ( level[w] == n && w != s ) {
       
   699 		bfs_queue.push(w);
       
   700 		Node z=level_list[l];
       
   701 		if ( g->valid(z) ) left.set(z,w);
       
   702 		right.set(w,z);
       
   703 		level_list[l]=w;
       
   704 		level.set(w, l);
       
   705 	      }
       
   706 	    }
       
   707 	  }
       
   708 
       
   709 	  //the starting flow
       
   710 	  OutEdgeIt e;
       
   711 	  for(g->first(e,s); g->valid(e); g->next(e))
       
   712 	    {
       
   713 	      Num c=(*capacity)[e];
       
   714 	      if ( c <= 0 ) continue;
       
   715 	      Node w=g->head(e);
       
   716 	      if ( level[w] < n ) {
       
   717 		if ( excess[w] <= 0 && w!=t ) 
       
   718 		  {
       
   719 		    next.set(w,first[level[w]]);
       
   720 		    first[level[w]]=w;
       
   721 		    //active[level[w]].push(w);
       
   722 		  }
       
   723 		flow->set(e, c);
       
   724 		excess.set(w, excess[w]+c);
       
   725 	      }
       
   726 	    }
       
   727 	  break;
       
   728 	}
       
   729 
       
   730       case GEN_FLOW:
       
   731       case PRE_FLOW:
       
   732 	{
       
   733 	  //Reverse_bfs from t in the residual graph,
       
   734 	  //to find the starting level.
       
   735 	  level.set(t,0);
       
   736 	  bfs_queue.push(t);
       
   737 
       
   738 	  while (!bfs_queue.empty()) {
       
   739 
       
   740 	    Node v=bfs_queue.front();
       
   741 	    bfs_queue.pop();
       
   742 	    int l=level[v]+1;
       
   743 
       
   744 	    InEdgeIt e;
       
   745 	    for(g->first(e,v); g->valid(e); g->next(e)) {
       
   746 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   747 	      Node w=g->tail(e);
       
   748 	      if ( level[w] == n && w != s ) {
       
   749 		bfs_queue.push(w);
       
   750 		Node z=level_list[l];
       
   751 		if ( g->valid(z) ) left.set(z,w);
       
   752 		right.set(w,z);
       
   753 		level_list[l]=w;
       
   754 		level.set(w, l);
       
   755 	      }
       
   756 	    }
       
   757 
       
   758 	    OutEdgeIt f;
       
   759 	    for(g->first(f,v); g->valid(f); g->next(f)) {
       
   760 	      if ( 0 >= (*flow)[f] ) continue;
       
   761 	      Node w=g->head(f);
       
   762 	      if ( level[w] == n && w != s ) {
       
   763 		bfs_queue.push(w);
       
   764 		Node z=level_list[l];
       
   765 		if ( g->valid(z) ) left.set(z,w);
       
   766 		right.set(w,z);
       
   767 		level_list[l]=w;
       
   768 		level.set(w, l);
       
   769 	      }
       
   770 	    }
       
   771 	  }
       
   772 
       
   773 
       
   774 	  //the starting flow
       
   775 	  OutEdgeIt e;
       
   776 	  for(g->first(e,s); g->valid(e); g->next(e))
       
   777 	    {
       
   778 	      Num rem=(*capacity)[e]-(*flow)[e];
       
   779 	      if ( rem <= 0 ) continue;
       
   780 	      Node w=g->head(e);
       
   781 	      if ( level[w] < n ) {
       
   782 		if ( excess[w] <= 0 && w!=t )
       
   783 		  {
       
   784 		    next.set(w,first[level[w]]);
       
   785 		    first[level[w]]=w;
       
   786 		    //active[level[w]].push(w);
       
   787 		  }   
       
   788 		flow->set(e, (*capacity)[e]);
       
   789 		excess.set(w, excess[w]+rem);
       
   790 	      }
       
   791 	    }
       
   792 
       
   793 	  InEdgeIt f;
       
   794 	  for(g->first(f,s); g->valid(f); g->next(f))
       
   795 	    {
       
   796 	      if ( (*flow)[f] <= 0 ) continue;
       
   797 	      Node w=g->tail(f);
       
   798 	      if ( level[w] < n ) {
       
   799 		if ( excess[w] <= 0 && w!=t )
       
   800 		  {
       
   801 		    next.set(w,first[level[w]]);
       
   802 		    first[level[w]]=w;
       
   803 		    //active[level[w]].push(w);
       
   804 		  }   
       
   805 		excess.set(w, excess[w]+(*flow)[f]);
       
   806 		flow->set(f, 0);
       
   807 	      }
       
   808 	    }
       
   809 	  break;
       
   810 	} //case PRE_FLOW
       
   811       }
       
   812     } //preflowPreproc
       
   813 
       
   814 
       
   815 
       
   816     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
       
   817 		 VecNode& level_list, NNMap& left,
       
   818 		 NNMap& right, int& b, int& k, bool what_heur )
       
   819     {
       
   820 
       
   821       Num lev=level[w];
       
   822 
       
   823       Node right_n=right[w];
       
   824       Node left_n=left[w];
       
   825 
       
   826       //unlacing starts
       
   827       if ( g->valid(right_n) ) {
       
   828 	if ( g->valid(left_n) ) {
       
   829 	  right.set(left_n, right_n);
       
   830 	  left.set(right_n, left_n);
       
   831 	} else {
       
   832 	  level_list[lev]=right_n;
       
   833 	  left.set(right_n, INVALID);
       
   834 	}
       
   835       } else {
       
   836 	if ( g->valid(left_n) ) {
       
   837 	  right.set(left_n, INVALID);
       
   838 	} else {
       
   839 	  level_list[lev]=INVALID;
       
   840 	}
       
   841       }
       
   842       //unlacing ends
       
   843 
       
   844       if ( !g->valid(level_list[lev]) ) {
       
   845 
       
   846 	//gapping starts
       
   847 	for (int i=lev; i!=k ; ) {
       
   848 	  Node v=level_list[++i];
       
   849 	  while ( g->valid(v) ) {
       
   850 	    level.set(v,n);
       
   851 	    v=right[v];
       
   852 	  }
       
   853 	  level_list[i]=INVALID;
       
   854 	  if ( !what_heur ) first[i]=INVALID;
       
   855 	  /*{
       
   856 	    while ( !active[i].empty() ) {
       
   857 	    active[i].pop();    //FIXME: ezt szebben kene
       
   858 	    }
       
   859 	    }*/
       
   860 	}
       
   861 
       
   862 	level.set(w,n);
       
   863 	b=lev-1;
       
   864 	k=b;
       
   865 	//gapping ends
       
   866 
       
   867       } else {
       
   868 
       
   869 	if ( newlevel == n ) level.set(w,n);
       
   870 	else {
       
   871 	  level.set(w,++newlevel);
       
   872 	  next.set(w,first[newlevel]);
       
   873 	  first[newlevel]=w;
       
   874 	  //	  active[newlevel].push(w);
       
   875 	  if ( what_heur ) b=newlevel;
       
   876 	  if ( k < newlevel ) ++k;      //now k=newlevel
       
   877 	  Node z=level_list[newlevel];
       
   878 	  if ( g->valid(z) ) left.set(z,w);
       
   879 	  right.set(w,z);
       
   880 	  left.set(w,INVALID);
       
   881 	  level_list[newlevel]=w;
       
   882 	}
       
   883       }
       
   884     } //relabel
       
   885   };  //class MaxFlow
       
   886 } //namespace hugo
       
   887 
       
   888 #endif //HUGO_MAX_FLOW_H
       
   889 
       
   890 
       
   891 
       
   892