|
1 // -*- C++ -*- |
|
2 #ifndef HUGO_MAX_FLOW_NO_STACK_H |
|
3 #define HUGO_MAX_FLOW_NO_STACK_H |
|
4 |
|
5 #include <vector> |
|
6 #include <queue> |
|
7 //#include <stack> |
|
8 |
|
9 #include <hugo/graph_wrapper.h> |
|
10 #include <hugo/invalid.h> |
|
11 #include <hugo/maps.h> |
|
12 |
|
13 /// \file |
|
14 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test. |
|
15 /// \ingroup galgs |
|
16 |
|
17 namespace hugo { |
|
18 |
|
19 /// \addtogroup galgs |
|
20 /// @{ |
|
21 ///Maximum flow algorithms class. |
|
22 |
|
23 ///This class provides various algorithms for finding a flow of |
|
24 ///maximum value in a directed graph. The \e source node, the \e |
|
25 ///target node, the \e capacity of the edges and the \e starting \e |
|
26 ///flow value of the edges should be passed to the algorithm through the |
|
27 ///constructor. It is possible to change these quantities using the |
|
28 ///functions \ref resetSource, \ref resetTarget, \ref resetCap and |
|
29 ///\ref resetFlow. Before any subsequent runs of any algorithm of |
|
30 ///the class \ref resetFlow should be called. |
|
31 |
|
32 ///After running an algorithm of the class, the actual flow value |
|
33 ///can be obtained by calling \ref flowValue(). The minimum |
|
34 ///value cut can be written into a \c node map of \c bools by |
|
35 ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
|
36 ///the inclusionwise minimum and maximum of the minimum value |
|
37 ///cuts, resp.) |
|
38 ///\param Graph The directed graph type the algorithm runs on. |
|
39 ///\param Num The number type of the capacities and the flow values. |
|
40 ///\param CapMap The capacity map type. |
|
41 ///\param FlowMap The flow map type. |
|
42 ///\author Marton Makai, Jacint Szabo |
|
43 template <typename Graph, typename Num, |
|
44 typename CapMap=typename Graph::template EdgeMap<Num>, |
|
45 typename FlowMap=typename Graph::template EdgeMap<Num> > |
|
46 class MaxFlow { |
|
47 protected: |
|
48 typedef typename Graph::Node Node; |
|
49 typedef typename Graph::NodeIt NodeIt; |
|
50 typedef typename Graph::EdgeIt EdgeIt; |
|
51 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
52 typedef typename Graph::InEdgeIt InEdgeIt; |
|
53 |
|
54 // typedef typename std::vector<std::stack<Node> > VecStack; |
|
55 typedef typename std::vector<Node> VecFirst; |
|
56 typedef typename Graph::template NodeMap<Node> NNMap; |
|
57 typedef typename std::vector<Node> VecNode; |
|
58 |
|
59 const Graph* g; |
|
60 Node s; |
|
61 Node t; |
|
62 const CapMap* capacity; |
|
63 FlowMap* flow; |
|
64 int n; //the number of nodes of G |
|
65 typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
|
66 //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
|
67 typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
|
68 typedef typename ResGW::Edge ResGWEdge; |
|
69 //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
|
70 typedef typename Graph::template NodeMap<int> ReachedMap; |
|
71 |
|
72 |
|
73 //level works as a bool map in augmenting path algorithms and is |
|
74 //used by bfs for storing reached information. In preflow, it |
|
75 //shows the levels of nodes. |
|
76 ReachedMap level; |
|
77 |
|
78 //excess is needed only in preflow |
|
79 typename Graph::template NodeMap<Num> excess; |
|
80 |
|
81 // constants used for heuristics |
|
82 static const int H0=20; |
|
83 static const int H1=1; |
|
84 |
|
85 public: |
|
86 |
|
87 ///Indicates the property of the starting flow. |
|
88 |
|
89 ///Indicates the property of the starting flow. The meanings are as follows: |
|
90 ///- \c ZERO_FLOW: constant zero flow |
|
91 ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
|
92 ///the sum of the out-flows in every node except the \e source and |
|
93 ///the \e target. |
|
94 ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
|
95 ///least the sum of the out-flows in every node except the \e source. |
|
96 ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
|
97 ///set to the constant zero flow in the beginning of the algorithm in this case. |
|
98 enum FlowEnum{ |
|
99 ZERO_FLOW, |
|
100 GEN_FLOW, |
|
101 PRE_FLOW, |
|
102 NO_FLOW |
|
103 }; |
|
104 |
|
105 enum StatusEnum { |
|
106 AFTER_NOTHING, |
|
107 AFTER_AUGMENTING, |
|
108 AFTER_FAST_AUGMENTING, |
|
109 AFTER_PRE_FLOW_PHASE_1, |
|
110 AFTER_PRE_FLOW_PHASE_2 |
|
111 }; |
|
112 |
|
113 /// Don not needle this flag only if necessary. |
|
114 StatusEnum status; |
|
115 |
|
116 // int number_of_augmentations; |
|
117 |
|
118 |
|
119 // template<typename IntMap> |
|
120 // class TrickyReachedMap { |
|
121 // protected: |
|
122 // IntMap* map; |
|
123 // int* number_of_augmentations; |
|
124 // public: |
|
125 // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
|
126 // map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
|
127 // void set(const Node& n, bool b) { |
|
128 // if (b) |
|
129 // map->set(n, *number_of_augmentations); |
|
130 // else |
|
131 // map->set(n, *number_of_augmentations-1); |
|
132 // } |
|
133 // bool operator[](const Node& n) const { |
|
134 // return (*map)[n]==*number_of_augmentations; |
|
135 // } |
|
136 // }; |
|
137 |
|
138 ///Constructor |
|
139 |
|
140 ///\todo Document, please. |
|
141 /// |
|
142 MaxFlow(const Graph& _G, Node _s, Node _t, |
|
143 const CapMap& _capacity, FlowMap& _flow) : |
|
144 g(&_G), s(_s), t(_t), capacity(&_capacity), |
|
145 flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), |
|
146 status(AFTER_NOTHING) { } |
|
147 |
|
148 ///Runs a maximum flow algorithm. |
|
149 |
|
150 ///Runs a preflow algorithm, which is the fastest maximum flow |
|
151 ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. |
|
152 ///\pre The starting flow must be |
|
153 /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|
154 /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|
155 /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|
156 /// - any map if \c fe is NO_FLOW. |
|
157 void run(FlowEnum fe=ZERO_FLOW) { |
|
158 preflow(fe); |
|
159 } |
|
160 |
|
161 |
|
162 ///Runs a preflow algorithm. |
|
163 |
|
164 ///Runs a preflow algorithm. The preflow algorithms provide the |
|
165 ///fastest way to compute a maximum flow in a directed graph. |
|
166 ///\pre The starting flow must be |
|
167 /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|
168 /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|
169 /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|
170 /// - any map if \c fe is NO_FLOW. |
|
171 /// |
|
172 ///\todo NO_FLOW should be the default flow. |
|
173 void preflow(FlowEnum fe) { |
|
174 preflowPhase1(fe); |
|
175 preflowPhase2(); |
|
176 } |
|
177 // Heuristics: |
|
178 // 2 phase |
|
179 // gap |
|
180 // list 'level_list' on the nodes on level i implemented by hand |
|
181 // stack 'active' on the active nodes on level i |
|
182 // runs heuristic 'highest label' for H1*n relabels |
|
183 // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
|
184 // Parameters H0 and H1 are initialized to 20 and 1. |
|
185 |
|
186 ///Runs the first phase of the preflow algorithm. |
|
187 |
|
188 ///The preflow algorithm consists of two phases, this method runs the |
|
189 ///first phase. After the first phase the maximum flow value and a |
|
190 ///minimum value cut can already be computed, though a maximum flow |
|
191 ///is net yet obtained. So after calling this method \ref flowValue |
|
192 ///and \ref actMinCut gives proper results. |
|
193 ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not |
|
194 ///give minimum value cuts unless calling \ref preflowPhase2. |
|
195 ///\pre The starting flow must be |
|
196 /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
|
197 /// - an arbitary flow if \c fe is \c GEN_FLOW, |
|
198 /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
|
199 /// - any map if \c fe is NO_FLOW. |
|
200 void preflowPhase1(FlowEnum fe) |
|
201 { |
|
202 |
|
203 int heur0=(int)(H0*n); //time while running 'bound decrease' |
|
204 int heur1=(int)(H1*n); //time while running 'highest label' |
|
205 int heur=heur1; //starting time interval (#of relabels) |
|
206 int numrelabel=0; |
|
207 |
|
208 bool what_heur=1; |
|
209 //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
|
210 |
|
211 bool end=false; |
|
212 //Needed for 'bound decrease', true means no active nodes are above bound |
|
213 //b. |
|
214 |
|
215 int k=n-2; //bound on the highest level under n containing a node |
|
216 int b=k; //bound on the highest level under n of an active node |
|
217 |
|
218 VecFirst first(n, INVALID); |
|
219 NNMap next(*g, INVALID); //maybe INVALID is not needed |
|
220 // VecStack active(n); |
|
221 |
|
222 NNMap left(*g, INVALID); |
|
223 NNMap right(*g, INVALID); |
|
224 VecNode level_list(n,INVALID); |
|
225 //List of the nodes in level i<n, set to n. |
|
226 |
|
227 NodeIt v; |
|
228 for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); |
|
229 //setting each node to level n |
|
230 |
|
231 if ( fe == NO_FLOW ) { |
|
232 EdgeIt e; |
|
233 for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); |
|
234 } |
|
235 |
|
236 switch (fe) { //computing the excess |
|
237 case PRE_FLOW: |
|
238 { |
|
239 NodeIt v; |
|
240 for(g->first(v); g->valid(v); g->next(v)) { |
|
241 Num exc=0; |
|
242 |
|
243 InEdgeIt e; |
|
244 for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
|
245 OutEdgeIt f; |
|
246 for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
|
247 |
|
248 excess.set(v,exc); |
|
249 |
|
250 //putting the active nodes into the stack |
|
251 int lev=level[v]; |
|
252 if ( exc > 0 && lev < n && v != t ) |
|
253 { |
|
254 next.set(v,first[lev]); |
|
255 first[lev]=v; |
|
256 } |
|
257 // active[lev].push(v); |
|
258 } |
|
259 break; |
|
260 } |
|
261 case GEN_FLOW: |
|
262 { |
|
263 NodeIt v; |
|
264 for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
|
265 |
|
266 Num exc=0; |
|
267 InEdgeIt e; |
|
268 for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
|
269 OutEdgeIt f; |
|
270 for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
|
271 excess.set(t,exc); |
|
272 break; |
|
273 } |
|
274 case ZERO_FLOW: |
|
275 case NO_FLOW: |
|
276 { |
|
277 NodeIt v; |
|
278 for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
|
279 break; |
|
280 } |
|
281 } |
|
282 |
|
283 preflowPreproc(fe, next, first,/*active*/ level_list, left, right); |
|
284 //End of preprocessing |
|
285 |
|
286 |
|
287 //Push/relabel on the highest level active nodes. |
|
288 while ( true ) { |
|
289 if ( b == 0 ) { |
|
290 if ( !what_heur && !end && k > 0 ) { |
|
291 b=k; |
|
292 end=true; |
|
293 } else break; |
|
294 } |
|
295 |
|
296 if ( !g->valid(first[b])/*active[b].empty()*/ ) --b; |
|
297 else { |
|
298 end=false; |
|
299 Node w=first[b]; |
|
300 first[b]=next[w]; |
|
301 /* Node w=active[b].top(); |
|
302 active[b].pop();*/ |
|
303 int newlevel=push(w,/*active*/next, first); |
|
304 if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list, |
|
305 left, right, b, k, what_heur); |
|
306 |
|
307 ++numrelabel; |
|
308 if ( numrelabel >= heur ) { |
|
309 numrelabel=0; |
|
310 if ( what_heur ) { |
|
311 what_heur=0; |
|
312 heur=heur0; |
|
313 end=false; |
|
314 } else { |
|
315 what_heur=1; |
|
316 heur=heur1; |
|
317 b=k; |
|
318 } |
|
319 } |
|
320 } |
|
321 } |
|
322 |
|
323 status=AFTER_PRE_FLOW_PHASE_1; |
|
324 } |
|
325 |
|
326 |
|
327 ///Runs the second phase of the preflow algorithm. |
|
328 |
|
329 ///The preflow algorithm consists of two phases, this method runs |
|
330 ///the second phase. After calling \ref preflowPhase1 and then |
|
331 ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, |
|
332 ///\ref minMinCut and \ref maxMinCut give proper results. |
|
333 ///\pre \ref preflowPhase1 must be called before. |
|
334 void preflowPhase2() |
|
335 { |
|
336 |
|
337 int k=n-2; //bound on the highest level under n containing a node |
|
338 int b=k; //bound on the highest level under n of an active node |
|
339 |
|
340 |
|
341 VecFirst first(n, INVALID); |
|
342 NNMap next(*g, INVALID); //maybe INVALID is not needed |
|
343 // VecStack active(n); |
|
344 level.set(s,0); |
|
345 std::queue<Node> bfs_queue; |
|
346 bfs_queue.push(s); |
|
347 |
|
348 while (!bfs_queue.empty()) { |
|
349 |
|
350 Node v=bfs_queue.front(); |
|
351 bfs_queue.pop(); |
|
352 int l=level[v]+1; |
|
353 |
|
354 InEdgeIt e; |
|
355 for(g->first(e,v); g->valid(e); g->next(e)) { |
|
356 if ( (*capacity)[e] <= (*flow)[e] ) continue; |
|
357 Node u=g->tail(e); |
|
358 if ( level[u] >= n ) { |
|
359 bfs_queue.push(u); |
|
360 level.set(u, l); |
|
361 if ( excess[u] > 0 ) { |
|
362 next.set(u,first[l]); |
|
363 first[l]=u; |
|
364 //active[l].push(u); |
|
365 } |
|
366 } |
|
367 } |
|
368 |
|
369 OutEdgeIt f; |
|
370 for(g->first(f,v); g->valid(f); g->next(f)) { |
|
371 if ( 0 >= (*flow)[f] ) continue; |
|
372 Node u=g->head(f); |
|
373 if ( level[u] >= n ) { |
|
374 bfs_queue.push(u); |
|
375 level.set(u, l); |
|
376 if ( excess[u] > 0 ) { |
|
377 next.set(u,first[l]); |
|
378 first[l]=u; |
|
379 //active[l].push(u); |
|
380 } |
|
381 } |
|
382 } |
|
383 } |
|
384 b=n-2; |
|
385 |
|
386 while ( true ) { |
|
387 |
|
388 if ( b == 0 ) break; |
|
389 |
|
390 if ( !g->valid(first[b])/*active[b].empty()*/ ) --b; |
|
391 else { |
|
392 |
|
393 Node w=first[b]; |
|
394 first[b]=next[w]; |
|
395 /* Node w=active[b].top(); |
|
396 active[b].pop();*/ |
|
397 int newlevel=push(w,next, first/*active*/); |
|
398 |
|
399 //relabel |
|
400 if ( excess[w] > 0 ) { |
|
401 level.set(w,++newlevel); |
|
402 next.set(w,first[newlevel]); |
|
403 first[newlevel]=w; |
|
404 //active[newlevel].push(w); |
|
405 b=newlevel; |
|
406 } |
|
407 } // if stack[b] is nonempty |
|
408 } // while(true) |
|
409 |
|
410 status=AFTER_PRE_FLOW_PHASE_2; |
|
411 } |
|
412 |
|
413 |
|
414 /// Returns the maximum value of a flow. |
|
415 |
|
416 /// Returns the maximum value of a flow, by counting the |
|
417 /// over-flow of the target node \ref t. |
|
418 /// It can be called already after running \ref preflowPhase1. |
|
419 Num flowValue() const { |
|
420 Num a=0; |
|
421 for(InEdgeIt e(*g,t);g->valid(e);G.next(e)) a+=(*flow)[e]; |
|
422 for(OutEdgeIt e(*g,t);g->valid(e);G.next(e)) a-=(*flow)[e]; |
|
423 |
|
424 //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
|
425 } |
|
426 |
|
427 ///Returns a minimum value cut after calling \ref preflowPhase1. |
|
428 |
|
429 ///After the first phase of the preflow algorithm the maximum flow |
|
430 ///value and a minimum value cut can already be computed. This |
|
431 ///method can be called after running \ref preflowPhase1 for |
|
432 ///obtaining a minimum value cut. |
|
433 /// \warning Gives proper result only right after calling \ref |
|
434 /// preflowPhase1. |
|
435 /// \todo We have to make some status variable which shows the |
|
436 /// actual state |
|
437 /// of the class. This enables us to determine which methods are valid |
|
438 /// for MinCut computation |
|
439 template<typename _CutMap> |
|
440 void actMinCut(_CutMap& M) const { |
|
441 NodeIt v; |
|
442 switch (status) { |
|
443 case AFTER_PRE_FLOW_PHASE_1: |
|
444 for(g->first(v); g->valid(v); g->next(v)) { |
|
445 if (level[v] < n) { |
|
446 M.set(v, false); |
|
447 } else { |
|
448 M.set(v, true); |
|
449 } |
|
450 } |
|
451 break; |
|
452 case AFTER_PRE_FLOW_PHASE_2: |
|
453 case AFTER_NOTHING: |
|
454 minMinCut(M); |
|
455 break; |
|
456 case AFTER_AUGMENTING: |
|
457 for(g->first(v); g->valid(v); g->next(v)) { |
|
458 if (level[v]) { |
|
459 M.set(v, true); |
|
460 } else { |
|
461 M.set(v, false); |
|
462 } |
|
463 } |
|
464 break; |
|
465 case AFTER_FAST_AUGMENTING: |
|
466 for(g->first(v); g->valid(v); g->next(v)) { |
|
467 if (level[v]==number_of_augmentations) { |
|
468 M.set(v, true); |
|
469 } else { |
|
470 M.set(v, false); |
|
471 } |
|
472 } |
|
473 break; |
|
474 } |
|
475 } |
|
476 |
|
477 ///Returns the inclusionwise minimum of the minimum value cuts. |
|
478 |
|
479 ///Sets \c M to the characteristic vector of the minimum value cut |
|
480 ///which is inclusionwise minimum. It is computed by processing |
|
481 ///a bfs from the source node \c s in the residual graph. |
|
482 ///\pre M should be a node map of bools initialized to false. |
|
483 ///\pre \c flow must be a maximum flow. |
|
484 template<typename _CutMap> |
|
485 void minMinCut(_CutMap& M) const { |
|
486 std::queue<Node> queue; |
|
487 |
|
488 M.set(s,true); |
|
489 queue.push(s); |
|
490 |
|
491 while (!queue.empty()) { |
|
492 Node w=queue.front(); |
|
493 queue.pop(); |
|
494 |
|
495 OutEdgeIt e; |
|
496 for(g->first(e,w) ; g->valid(e); g->next(e)) { |
|
497 Node v=g->head(e); |
|
498 if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
|
499 queue.push(v); |
|
500 M.set(v, true); |
|
501 } |
|
502 } |
|
503 |
|
504 InEdgeIt f; |
|
505 for(g->first(f,w) ; g->valid(f); g->next(f)) { |
|
506 Node v=g->tail(f); |
|
507 if (!M[v] && (*flow)[f] > 0 ) { |
|
508 queue.push(v); |
|
509 M.set(v, true); |
|
510 } |
|
511 } |
|
512 } |
|
513 } |
|
514 |
|
515 ///Returns the inclusionwise maximum of the minimum value cuts. |
|
516 |
|
517 ///Sets \c M to the characteristic vector of the minimum value cut |
|
518 ///which is inclusionwise maximum. It is computed by processing a |
|
519 ///backward bfs from the target node \c t in the residual graph. |
|
520 ///\pre M should be a node map of bools initialized to false. |
|
521 ///\pre \c flow must be a maximum flow. |
|
522 template<typename _CutMap> |
|
523 void maxMinCut(_CutMap& M) const { |
|
524 |
|
525 NodeIt v; |
|
526 for(g->first(v) ; g->valid(v); g->next(v)) { |
|
527 M.set(v, true); |
|
528 } |
|
529 |
|
530 std::queue<Node> queue; |
|
531 |
|
532 M.set(t,false); |
|
533 queue.push(t); |
|
534 |
|
535 while (!queue.empty()) { |
|
536 Node w=queue.front(); |
|
537 queue.pop(); |
|
538 |
|
539 InEdgeIt e; |
|
540 for(g->first(e,w) ; g->valid(e); g->next(e)) { |
|
541 Node v=g->tail(e); |
|
542 if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
|
543 queue.push(v); |
|
544 M.set(v, false); |
|
545 } |
|
546 } |
|
547 |
|
548 OutEdgeIt f; |
|
549 for(g->first(f,w) ; g->valid(f); g->next(f)) { |
|
550 Node v=g->head(f); |
|
551 if (M[v] && (*flow)[f] > 0 ) { |
|
552 queue.push(v); |
|
553 M.set(v, false); |
|
554 } |
|
555 } |
|
556 } |
|
557 } |
|
558 |
|
559 ///Returns a minimum value cut. |
|
560 |
|
561 ///Sets \c M to the characteristic vector of a minimum value cut. |
|
562 ///\pre M should be a node map of bools initialized to false. |
|
563 ///\pre \c flow must be a maximum flow. |
|
564 template<typename CutMap> |
|
565 void minCut(CutMap& M) const { minMinCut(M); } |
|
566 |
|
567 ///Resets the source node to \c _s. |
|
568 |
|
569 ///Resets the source node to \c _s. |
|
570 /// |
|
571 void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; } |
|
572 |
|
573 ///Resets the target node to \c _t. |
|
574 |
|
575 ///Resets the target node to \c _t. |
|
576 /// |
|
577 void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; } |
|
578 |
|
579 /// Resets the edge map of the capacities to _cap. |
|
580 |
|
581 /// Resets the edge map of the capacities to _cap. |
|
582 /// |
|
583 void resetCap(const CapMap& _cap) |
|
584 { capacity=&_cap; status=AFTER_NOTHING; } |
|
585 |
|
586 /// Resets the edge map of the flows to _flow. |
|
587 |
|
588 /// Resets the edge map of the flows to _flow. |
|
589 /// |
|
590 void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } |
|
591 |
|
592 |
|
593 private: |
|
594 |
|
595 int push(Node w, NNMap& next, VecFirst& first) { |
|
596 |
|
597 int lev=level[w]; |
|
598 Num exc=excess[w]; |
|
599 int newlevel=n; //bound on the next level of w |
|
600 |
|
601 OutEdgeIt e; |
|
602 for(g->first(e,w); g->valid(e); g->next(e)) { |
|
603 |
|
604 if ( (*flow)[e] >= (*capacity)[e] ) continue; |
|
605 Node v=g->head(e); |
|
606 |
|
607 if( lev > level[v] ) { //Push is allowed now |
|
608 |
|
609 if ( excess[v]<=0 && v!=t && v!=s ) { |
|
610 next.set(v,first[level[v]]); |
|
611 first[level[v]]=v; |
|
612 // int lev_v=level[v]; |
|
613 //active[lev_v].push(v); |
|
614 } |
|
615 |
|
616 Num cap=(*capacity)[e]; |
|
617 Num flo=(*flow)[e]; |
|
618 Num remcap=cap-flo; |
|
619 |
|
620 if ( remcap >= exc ) { //A nonsaturating push. |
|
621 |
|
622 flow->set(e, flo+exc); |
|
623 excess.set(v, excess[v]+exc); |
|
624 exc=0; |
|
625 break; |
|
626 |
|
627 } else { //A saturating push. |
|
628 flow->set(e, cap); |
|
629 excess.set(v, excess[v]+remcap); |
|
630 exc-=remcap; |
|
631 } |
|
632 } else if ( newlevel > level[v] ) newlevel = level[v]; |
|
633 } //for out edges wv |
|
634 |
|
635 if ( exc > 0 ) { |
|
636 InEdgeIt e; |
|
637 for(g->first(e,w); g->valid(e); g->next(e)) { |
|
638 |
|
639 if( (*flow)[e] <= 0 ) continue; |
|
640 Node v=g->tail(e); |
|
641 |
|
642 if( lev > level[v] ) { //Push is allowed now |
|
643 |
|
644 if ( excess[v]<=0 && v!=t && v!=s ) { |
|
645 next.set(v,first[level[v]]); |
|
646 first[level[v]]=v; |
|
647 //int lev_v=level[v]; |
|
648 //active[lev_v].push(v); |
|
649 } |
|
650 |
|
651 Num flo=(*flow)[e]; |
|
652 |
|
653 if ( flo >= exc ) { //A nonsaturating push. |
|
654 |
|
655 flow->set(e, flo-exc); |
|
656 excess.set(v, excess[v]+exc); |
|
657 exc=0; |
|
658 break; |
|
659 } else { //A saturating push. |
|
660 |
|
661 excess.set(v, excess[v]+flo); |
|
662 exc-=flo; |
|
663 flow->set(e,0); |
|
664 } |
|
665 } else if ( newlevel > level[v] ) newlevel = level[v]; |
|
666 } //for in edges vw |
|
667 |
|
668 } // if w still has excess after the out edge for cycle |
|
669 |
|
670 excess.set(w, exc); |
|
671 |
|
672 return newlevel; |
|
673 } |
|
674 |
|
675 |
|
676 void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, |
|
677 VecNode& level_list, NNMap& left, NNMap& right) |
|
678 { |
|
679 std::queue<Node> bfs_queue; |
|
680 |
|
681 switch (fe) { |
|
682 case NO_FLOW: //flow is already set to const zero in this case |
|
683 case ZERO_FLOW: |
|
684 { |
|
685 //Reverse_bfs from t, to find the starting level. |
|
686 level.set(t,0); |
|
687 bfs_queue.push(t); |
|
688 |
|
689 while (!bfs_queue.empty()) { |
|
690 |
|
691 Node v=bfs_queue.front(); |
|
692 bfs_queue.pop(); |
|
693 int l=level[v]+1; |
|
694 |
|
695 InEdgeIt e; |
|
696 for(g->first(e,v); g->valid(e); g->next(e)) { |
|
697 Node w=g->tail(e); |
|
698 if ( level[w] == n && w != s ) { |
|
699 bfs_queue.push(w); |
|
700 Node z=level_list[l]; |
|
701 if ( g->valid(z) ) left.set(z,w); |
|
702 right.set(w,z); |
|
703 level_list[l]=w; |
|
704 level.set(w, l); |
|
705 } |
|
706 } |
|
707 } |
|
708 |
|
709 //the starting flow |
|
710 OutEdgeIt e; |
|
711 for(g->first(e,s); g->valid(e); g->next(e)) |
|
712 { |
|
713 Num c=(*capacity)[e]; |
|
714 if ( c <= 0 ) continue; |
|
715 Node w=g->head(e); |
|
716 if ( level[w] < n ) { |
|
717 if ( excess[w] <= 0 && w!=t ) |
|
718 { |
|
719 next.set(w,first[level[w]]); |
|
720 first[level[w]]=w; |
|
721 //active[level[w]].push(w); |
|
722 } |
|
723 flow->set(e, c); |
|
724 excess.set(w, excess[w]+c); |
|
725 } |
|
726 } |
|
727 break; |
|
728 } |
|
729 |
|
730 case GEN_FLOW: |
|
731 case PRE_FLOW: |
|
732 { |
|
733 //Reverse_bfs from t in the residual graph, |
|
734 //to find the starting level. |
|
735 level.set(t,0); |
|
736 bfs_queue.push(t); |
|
737 |
|
738 while (!bfs_queue.empty()) { |
|
739 |
|
740 Node v=bfs_queue.front(); |
|
741 bfs_queue.pop(); |
|
742 int l=level[v]+1; |
|
743 |
|
744 InEdgeIt e; |
|
745 for(g->first(e,v); g->valid(e); g->next(e)) { |
|
746 if ( (*capacity)[e] <= (*flow)[e] ) continue; |
|
747 Node w=g->tail(e); |
|
748 if ( level[w] == n && w != s ) { |
|
749 bfs_queue.push(w); |
|
750 Node z=level_list[l]; |
|
751 if ( g->valid(z) ) left.set(z,w); |
|
752 right.set(w,z); |
|
753 level_list[l]=w; |
|
754 level.set(w, l); |
|
755 } |
|
756 } |
|
757 |
|
758 OutEdgeIt f; |
|
759 for(g->first(f,v); g->valid(f); g->next(f)) { |
|
760 if ( 0 >= (*flow)[f] ) continue; |
|
761 Node w=g->head(f); |
|
762 if ( level[w] == n && w != s ) { |
|
763 bfs_queue.push(w); |
|
764 Node z=level_list[l]; |
|
765 if ( g->valid(z) ) left.set(z,w); |
|
766 right.set(w,z); |
|
767 level_list[l]=w; |
|
768 level.set(w, l); |
|
769 } |
|
770 } |
|
771 } |
|
772 |
|
773 |
|
774 //the starting flow |
|
775 OutEdgeIt e; |
|
776 for(g->first(e,s); g->valid(e); g->next(e)) |
|
777 { |
|
778 Num rem=(*capacity)[e]-(*flow)[e]; |
|
779 if ( rem <= 0 ) continue; |
|
780 Node w=g->head(e); |
|
781 if ( level[w] < n ) { |
|
782 if ( excess[w] <= 0 && w!=t ) |
|
783 { |
|
784 next.set(w,first[level[w]]); |
|
785 first[level[w]]=w; |
|
786 //active[level[w]].push(w); |
|
787 } |
|
788 flow->set(e, (*capacity)[e]); |
|
789 excess.set(w, excess[w]+rem); |
|
790 } |
|
791 } |
|
792 |
|
793 InEdgeIt f; |
|
794 for(g->first(f,s); g->valid(f); g->next(f)) |
|
795 { |
|
796 if ( (*flow)[f] <= 0 ) continue; |
|
797 Node w=g->tail(f); |
|
798 if ( level[w] < n ) { |
|
799 if ( excess[w] <= 0 && w!=t ) |
|
800 { |
|
801 next.set(w,first[level[w]]); |
|
802 first[level[w]]=w; |
|
803 //active[level[w]].push(w); |
|
804 } |
|
805 excess.set(w, excess[w]+(*flow)[f]); |
|
806 flow->set(f, 0); |
|
807 } |
|
808 } |
|
809 break; |
|
810 } //case PRE_FLOW |
|
811 } |
|
812 } //preflowPreproc |
|
813 |
|
814 |
|
815 |
|
816 void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, |
|
817 VecNode& level_list, NNMap& left, |
|
818 NNMap& right, int& b, int& k, bool what_heur ) |
|
819 { |
|
820 |
|
821 Num lev=level[w]; |
|
822 |
|
823 Node right_n=right[w]; |
|
824 Node left_n=left[w]; |
|
825 |
|
826 //unlacing starts |
|
827 if ( g->valid(right_n) ) { |
|
828 if ( g->valid(left_n) ) { |
|
829 right.set(left_n, right_n); |
|
830 left.set(right_n, left_n); |
|
831 } else { |
|
832 level_list[lev]=right_n; |
|
833 left.set(right_n, INVALID); |
|
834 } |
|
835 } else { |
|
836 if ( g->valid(left_n) ) { |
|
837 right.set(left_n, INVALID); |
|
838 } else { |
|
839 level_list[lev]=INVALID; |
|
840 } |
|
841 } |
|
842 //unlacing ends |
|
843 |
|
844 if ( !g->valid(level_list[lev]) ) { |
|
845 |
|
846 //gapping starts |
|
847 for (int i=lev; i!=k ; ) { |
|
848 Node v=level_list[++i]; |
|
849 while ( g->valid(v) ) { |
|
850 level.set(v,n); |
|
851 v=right[v]; |
|
852 } |
|
853 level_list[i]=INVALID; |
|
854 if ( !what_heur ) first[i]=INVALID; |
|
855 /*{ |
|
856 while ( !active[i].empty() ) { |
|
857 active[i].pop(); //FIXME: ezt szebben kene |
|
858 } |
|
859 }*/ |
|
860 } |
|
861 |
|
862 level.set(w,n); |
|
863 b=lev-1; |
|
864 k=b; |
|
865 //gapping ends |
|
866 |
|
867 } else { |
|
868 |
|
869 if ( newlevel == n ) level.set(w,n); |
|
870 else { |
|
871 level.set(w,++newlevel); |
|
872 next.set(w,first[newlevel]); |
|
873 first[newlevel]=w; |
|
874 // active[newlevel].push(w); |
|
875 if ( what_heur ) b=newlevel; |
|
876 if ( k < newlevel ) ++k; //now k=newlevel |
|
877 Node z=level_list[newlevel]; |
|
878 if ( g->valid(z) ) left.set(z,w); |
|
879 right.set(w,z); |
|
880 left.set(w,INVALID); |
|
881 level_list[newlevel]=w; |
|
882 } |
|
883 } |
|
884 } //relabel |
|
885 }; //class MaxFlow |
|
886 } //namespace hugo |
|
887 |
|
888 #endif //HUGO_MAX_FLOW_H |
|
889 |
|
890 |
|
891 |
|
892 |