|
1 // -*- c++ -*- // |
|
2 |
|
3 /** |
|
4 @defgroup paths Path Structures |
|
5 @ingroup datas |
|
6 \brief Path structures implemented in Hugo. |
|
7 |
|
8 Hugolib provides flexible data structures |
|
9 to work with paths. |
|
10 |
|
11 All of them have the same interface, especially they can be built or extended |
|
12 using a standard Builder subclass. This make is easy to have e.g. the Dijkstra |
|
13 algorithm to store its result in any kind of path structure. |
|
14 |
|
15 */ |
|
16 |
|
17 ///\ingroup paths |
|
18 ///\file |
|
19 ///\brief Classes for representing paths in graphs. |
|
20 |
|
21 #ifndef HUGO_PATH_H |
|
22 #define HUGO_PATH_H |
|
23 |
|
24 #include <deque> |
|
25 #include <vector> |
|
26 #include <algorithm> |
|
27 |
|
28 #include <hugo/invalid.h> |
|
29 #include <hugo/error.h> |
|
30 #include <debug.h> |
|
31 |
|
32 namespace hugo { |
|
33 |
|
34 /// \addtogroup paths |
|
35 /// @{ |
|
36 |
|
37 |
|
38 //! \brief A structure for representing directed path in a graph. |
|
39 //! |
|
40 //! A structure for representing directed path in a graph. |
|
41 //! \param Graph The graph type in which the path is. |
|
42 //! \param DM DebugMode, defaults to DefaultDebugMode. |
|
43 //! |
|
44 //! In a sense, the path can be treated as a graph, for is has \c NodeIt |
|
45 //! and \c EdgeIt with the same usage. These types converts to the \c Node |
|
46 //! and \c Edge of the original graph. |
|
47 //! |
|
48 //! \todo Thoroughfully check all the range and consistency tests. |
|
49 template<typename Graph, typename DM = DefaultDebugMode> |
|
50 class DirPath { |
|
51 public: |
|
52 /// Edge type of the underlying graph. |
|
53 typedef typename Graph::Edge GraphEdge; |
|
54 /// Node type of the underlying graph. |
|
55 typedef typename Graph::Node GraphNode; |
|
56 class NodeIt; |
|
57 class EdgeIt; |
|
58 |
|
59 protected: |
|
60 const Graph *gr; |
|
61 typedef std::vector<GraphEdge> Container; |
|
62 Container edges; |
|
63 |
|
64 public: |
|
65 |
|
66 /// \param _G The graph in which the path is. |
|
67 /// |
|
68 DirPath(const Graph &_G) : gr(&_G) {} |
|
69 |
|
70 /// \brief Subpath constructor. |
|
71 /// |
|
72 /// Subpath defined by two nodes. |
|
73 /// \warning It is an error if the two edges are not in order! |
|
74 DirPath(const DirPath &P, const NodeIt &a, const NodeIt &b) { |
|
75 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
76 // FIXME: this check should be more elaborate... |
|
77 fault("DirPath, subpath ctor: invalid bounding nodes"); |
|
78 } |
|
79 gr = P.gr; |
|
80 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
81 } |
|
82 |
|
83 /// \brief Subpath constructor. |
|
84 /// |
|
85 /// Subpath defined by two edges. Contains edges in [a,b) |
|
86 /// \warning It is an error if the two edges are not in order! |
|
87 DirPath(const DirPath &P, const EdgeIt &a, const EdgeIt &b) { |
|
88 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
89 // FIXME: this check should be more elaborate... |
|
90 fault("DirPath, subpath ctor: invalid bounding nodes"); |
|
91 } |
|
92 gr = P.gr; |
|
93 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
94 } |
|
95 |
|
96 /// Length of the path. |
|
97 size_t length() const { return edges.size(); } |
|
98 /// Returns whether the path is empty. |
|
99 bool empty() const { return edges.empty(); } |
|
100 |
|
101 /// Resets the path to an empty path. |
|
102 void clear() { edges.clear(); } |
|
103 |
|
104 /// \brief Starting point of the path. |
|
105 /// |
|
106 /// Starting point of the path. |
|
107 /// Returns INVALID if the path is empty. |
|
108 GraphNode from() const { |
|
109 return empty() ? INVALID : gr->tail(edges[0]); |
|
110 } |
|
111 /// \brief End point of the path. |
|
112 /// |
|
113 /// End point of the path. |
|
114 /// Returns INVALID if the path is empty. |
|
115 GraphNode to() const { |
|
116 return empty() ? INVALID : gr->head(edges[length()-1]); |
|
117 } |
|
118 |
|
119 /// \brief Initializes node or edge iterator to point to the first |
|
120 /// node or edge. |
|
121 /// |
|
122 /// \sa nth |
|
123 template<typename It> |
|
124 It& first(It &i) const { return i=It(*this); } |
|
125 |
|
126 /// \brief Initializes node iterator to point to the node of a given index. |
|
127 NodeIt& nth(NodeIt &i, int n) const { |
|
128 if( DM::range_check && (n<0 || n>int(length())) ) |
|
129 fault("DirPath::nth: index out of range"); |
|
130 return i=NodeIt(*this, n); |
|
131 } |
|
132 |
|
133 /// \brief Initializes edge iterator to point to the edge of a given index. |
|
134 EdgeIt& nth(EdgeIt &i, int n) const { |
|
135 if( DM::range_check && (n<0 || n>=int(length())) ) |
|
136 fault("DirPath::nth: index out of range"); |
|
137 return i=EdgeIt(*this, n); |
|
138 } |
|
139 |
|
140 /// Checks validity of a node or edge iterator. |
|
141 template<typename It> |
|
142 static |
|
143 bool valid(const It &i) { return i.valid(); } |
|
144 |
|
145 /// Steps the given node or edge iterator. |
|
146 template<typename It> |
|
147 static |
|
148 It& next(It &e) { |
|
149 if( DM::range_check && !e.valid() ) |
|
150 fault("DirPath::next() on invalid iterator"); |
|
151 return ++e; |
|
152 } |
|
153 |
|
154 /// \brief Returns node iterator pointing to the head node of the |
|
155 /// given edge iterator. |
|
156 NodeIt head(const EdgeIt& e) const { |
|
157 if( DM::range_check && !e.valid() ) |
|
158 fault("DirPath::head() on invalid iterator"); |
|
159 return NodeIt(*this, e.idx+1); |
|
160 } |
|
161 |
|
162 /// \brief Returns node iterator pointing to the tail node of the |
|
163 /// given edge iterator. |
|
164 NodeIt tail(const EdgeIt& e) const { |
|
165 if( DM::range_check && !e.valid() ) |
|
166 fault("DirPath::tail() on invalid iterator"); |
|
167 return NodeIt(*this, e.idx); |
|
168 } |
|
169 |
|
170 |
|
171 /* Iterator classes */ |
|
172 |
|
173 /** |
|
174 * \brief Iterator class to iterate on the edges of the paths |
|
175 * |
|
176 * \ingroup paths |
|
177 * This class is used to iterate on the edges of the paths |
|
178 * |
|
179 * Of course it converts to Graph::Edge |
|
180 * |
|
181 * \todo Its interface differs from the standard edge iterator. |
|
182 * Yes, it shouldn't. |
|
183 */ |
|
184 class EdgeIt { |
|
185 friend class DirPath; |
|
186 |
|
187 int idx; |
|
188 const DirPath *p; |
|
189 public: |
|
190 /// Default constructor |
|
191 EdgeIt() {} |
|
192 /// Invalid constructor |
|
193 EdgeIt(Invalid) : idx(-1), p(0) {} |
|
194 /// Constructor with starting point |
|
195 EdgeIt(const DirPath &_p, int _idx = 0) : |
|
196 idx(_idx), p(&_p) { validate(); } |
|
197 |
|
198 ///Validity check |
|
199 bool valid() const { return idx!=-1; } |
|
200 |
|
201 ///Conversion to Graph::Edge |
|
202 operator GraphEdge () const { |
|
203 return valid() ? p->edges[idx] : INVALID; |
|
204 } |
|
205 |
|
206 /// Next edge |
|
207 EdgeIt& operator++() { ++idx; validate(); return *this; } |
|
208 |
|
209 /// Comparison operator |
|
210 bool operator==(const EdgeIt& e) const { return idx==e.idx; } |
|
211 /// Comparison operator |
|
212 bool operator!=(const EdgeIt& e) const { return idx!=e.idx; } |
|
213 /// Comparison operator |
|
214 bool operator<(const EdgeIt& e) const { return idx<e.idx; } |
|
215 |
|
216 private: |
|
217 // FIXME: comparison between signed and unsigned... |
|
218 // Jo ez igy? Vagy esetleg legyen a length() int? |
|
219 void validate() { if( size_t(idx) >= p->length() ) idx=-1; } |
|
220 }; |
|
221 |
|
222 /** |
|
223 * \brief Iterator class to iterate on the nodes of the paths |
|
224 * |
|
225 * \ingroup paths |
|
226 * This class is used to iterate on the nodes of the paths |
|
227 * |
|
228 * Of course it converts to Graph::Node |
|
229 * |
|
230 * \todo Its interface differs from the standard node iterator. |
|
231 * Yes, it shouldn't. |
|
232 */ |
|
233 class NodeIt { |
|
234 friend class DirPath; |
|
235 |
|
236 int idx; |
|
237 const DirPath *p; |
|
238 public: |
|
239 /// Default constructor |
|
240 NodeIt() {} |
|
241 /// Invalid constructor |
|
242 NodeIt(Invalid) : idx(-1), p(0) {} |
|
243 /// Constructor with starting point |
|
244 NodeIt(const DirPath &_p, int _idx = 0) : |
|
245 idx(_idx), p(&_p) { validate(); } |
|
246 |
|
247 ///Validity check |
|
248 bool valid() const { return idx!=-1; } |
|
249 |
|
250 ///Conversion to Graph::Node |
|
251 operator const GraphNode& () const { |
|
252 if(idx >= p->length()) |
|
253 return p->to(); |
|
254 else if(idx >= 0) |
|
255 return p->gr->tail(p->edges[idx]); |
|
256 else |
|
257 return INVALID; |
|
258 } |
|
259 /// Next node |
|
260 NodeIt& operator++() { ++idx; validate(); return *this; } |
|
261 |
|
262 /// Comparison operator |
|
263 bool operator==(const NodeIt& e) const { return idx==e.idx; } |
|
264 /// Comparison operator |
|
265 bool operator!=(const NodeIt& e) const { return idx!=e.idx; } |
|
266 /// Comparison operator |
|
267 bool operator<(const NodeIt& e) const { return idx<e.idx; } |
|
268 |
|
269 private: |
|
270 void validate() { if( size_t(idx) > p->length() ) idx=-1; } |
|
271 }; |
|
272 |
|
273 friend class Builder; |
|
274 |
|
275 /** |
|
276 * \brief Class to build paths |
|
277 * |
|
278 * \ingroup paths |
|
279 * This class is used to fill a path with edges. |
|
280 * |
|
281 * You can push new edges to the front and to the back of the path in |
|
282 * arbitrary order then you should commit these changes to the graph. |
|
283 * |
|
284 * Fundamentally, for most "Paths" (classes fulfilling the |
|
285 * PathConcept) while the builder is active (after the first modifying |
|
286 * operation and until the commit()) the original Path is in a |
|
287 * "transitional" state (operations on it have undefined result). But |
|
288 * in the case of DirPath the original path remains unchanged until the |
|
289 * commit. However we don't recomend that you use this feature. |
|
290 */ |
|
291 class Builder { |
|
292 DirPath &P; |
|
293 Container front, back; |
|
294 |
|
295 public: |
|
296 ///\param _P the path you want to fill in. |
|
297 /// |
|
298 Builder(DirPath &_P) : P(_P) {} |
|
299 |
|
300 /// Sets the starting node of the path. |
|
301 |
|
302 /// Sets the starting node of the path. Edge added to the path |
|
303 /// afterwards have to be incident to this node. |
|
304 /// It should be called iff the path is empty and before any call to |
|
305 /// \ref pushFront() or \ref pushBack() |
|
306 void setStart(const GraphNode &) {} |
|
307 |
|
308 ///Push a new edge to the front of the path |
|
309 |
|
310 ///Push a new edge to the front of the path. |
|
311 ///\sa setStart |
|
312 void pushFront(const GraphEdge& e) { |
|
313 if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) { |
|
314 fault("DirPath::Builder::pushFront: nonincident edge"); |
|
315 } |
|
316 front.push_back(e); |
|
317 } |
|
318 |
|
319 ///Push a new edge to the back of the path |
|
320 |
|
321 ///Push a new edge to the back of the path. |
|
322 ///\sa setStart |
|
323 void pushBack(const GraphEdge& e) { |
|
324 if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) { |
|
325 fault("DirPath::Builder::pushBack: nonincident edge"); |
|
326 } |
|
327 back.push_back(e); |
|
328 } |
|
329 |
|
330 ///Commit the changes to the path. |
|
331 void commit() { |
|
332 if( !(front.empty() && back.empty()) ) { |
|
333 Container tmp; |
|
334 tmp.reserve(front.size()+back.size()+P.length()); |
|
335 tmp.insert(tmp.end(), front.rbegin(), front.rend()); |
|
336 tmp.insert(tmp.end(), P.edges.begin(), P.edges.end()); |
|
337 tmp.insert(tmp.end(), back.begin(), back.end()); |
|
338 P.edges.swap(tmp); |
|
339 front.clear(); |
|
340 back.clear(); |
|
341 } |
|
342 } |
|
343 |
|
344 // FIXME: Hmm, pontosan hogy is kene ezt csinalni? |
|
345 // Hogy kenyelmes egy ilyet hasznalni? |
|
346 |
|
347 ///Reserve storage in advance for the builder |
|
348 |
|
349 ///If you know an reasonable upper bound of the number of the edges |
|
350 ///to add, using this function you can speed up the building. |
|
351 void reserve(size_t r) { |
|
352 front.reserve(r); |
|
353 back.reserve(r); |
|
354 } |
|
355 |
|
356 private: |
|
357 bool empty() { |
|
358 return front.empty() && back.empty() && P.empty(); |
|
359 } |
|
360 |
|
361 GraphNode from() const { |
|
362 if( ! front.empty() ) |
|
363 return P.gr->tail(front[front.size()-1]); |
|
364 else if( ! P.empty() ) |
|
365 return P.gr->tail(P.edges[0]); |
|
366 else if( ! back.empty() ) |
|
367 return P.gr->tail(back[0]); |
|
368 else |
|
369 return INVALID; |
|
370 } |
|
371 GraphNode to() const { |
|
372 if( ! back.empty() ) |
|
373 return P.gr->head(back[back.size()-1]); |
|
374 else if( ! P.empty() ) |
|
375 return P.gr->head(P.edges[P.length()-1]); |
|
376 else if( ! front.empty() ) |
|
377 return P.gr->head(front[0]); |
|
378 else |
|
379 return INVALID; |
|
380 } |
|
381 |
|
382 }; |
|
383 |
|
384 }; |
|
385 |
|
386 |
|
387 |
|
388 |
|
389 |
|
390 |
|
391 |
|
392 |
|
393 |
|
394 |
|
395 /**********************************************************************/ |
|
396 |
|
397 |
|
398 //! \brief A structure for representing undirected path in a graph. |
|
399 //! |
|
400 //! A structure for representing undirected path in a graph. Ie. this is |
|
401 //! a path in a \e directed graph but the edges should not be directed |
|
402 //! forward. |
|
403 //! |
|
404 //! \param Graph The graph type in which the path is. |
|
405 //! \param DM DebugMode, defaults to DefaultDebugMode. |
|
406 //! |
|
407 //! In a sense, the path can be treated as a graph, for is has \c NodeIt |
|
408 //! and \c EdgeIt with the same usage. These types converts to the \c Node |
|
409 //! and \c Edge of the original graph. |
|
410 //! |
|
411 //! \todo Thoroughfully check all the range and consistency tests. |
|
412 template<typename Graph, typename DM = DefaultDebugMode> |
|
413 class UndirPath { |
|
414 public: |
|
415 /// Edge type of the underlying graph. |
|
416 typedef typename Graph::Edge GraphEdge; |
|
417 /// Node type of the underlying graph. |
|
418 typedef typename Graph::Node GraphNode; |
|
419 class NodeIt; |
|
420 class EdgeIt; |
|
421 |
|
422 protected: |
|
423 const Graph *gr; |
|
424 typedef std::vector<GraphEdge> Container; |
|
425 Container edges; |
|
426 |
|
427 public: |
|
428 |
|
429 /// \param _G The graph in which the path is. |
|
430 /// |
|
431 UndirPath(const Graph &_G) : gr(&_G) {} |
|
432 |
|
433 /// \brief Subpath constructor. |
|
434 /// |
|
435 /// Subpath defined by two nodes. |
|
436 /// \warning It is an error if the two edges are not in order! |
|
437 UndirPath(const UndirPath &P, const NodeIt &a, const NodeIt &b) { |
|
438 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
439 // FIXME: this check should be more elaborate... |
|
440 fault("UndirPath, subpath ctor: invalid bounding nodes"); |
|
441 } |
|
442 gr = P.gr; |
|
443 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
444 } |
|
445 |
|
446 /// \brief Subpath constructor. |
|
447 /// |
|
448 /// Subpath defined by two edges. Contains edges in [a,b) |
|
449 /// \warning It is an error if the two edges are not in order! |
|
450 UndirPath(const UndirPath &P, const EdgeIt &a, const EdgeIt &b) { |
|
451 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
452 // FIXME: this check should be more elaborate... |
|
453 fault("UndirPath, subpath ctor: invalid bounding nodes"); |
|
454 } |
|
455 gr = P.gr; |
|
456 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
457 } |
|
458 |
|
459 /// Length of the path. |
|
460 size_t length() const { return edges.size(); } |
|
461 /// Returns whether the path is empty. |
|
462 bool empty() const { return edges.empty(); } |
|
463 |
|
464 /// Resets the path to an empty path. |
|
465 void clear() { edges.clear(); } |
|
466 |
|
467 /// \brief Starting point of the path. |
|
468 /// |
|
469 /// Starting point of the path. |
|
470 /// Returns INVALID if the path is empty. |
|
471 GraphNode from() const { |
|
472 return empty() ? INVALID : gr->tail(edges[0]); |
|
473 } |
|
474 /// \brief End point of the path. |
|
475 /// |
|
476 /// End point of the path. |
|
477 /// Returns INVALID if the path is empty. |
|
478 GraphNode to() const { |
|
479 return empty() ? INVALID : gr->head(edges[length()-1]); |
|
480 } |
|
481 |
|
482 /// \brief Initializes node or edge iterator to point to the first |
|
483 /// node or edge. |
|
484 /// |
|
485 /// \sa nth |
|
486 template<typename It> |
|
487 It& first(It &i) const { return i=It(*this); } |
|
488 |
|
489 /// \brief Initializes node iterator to point to the node of a given index. |
|
490 NodeIt& nth(NodeIt &i, int n) const { |
|
491 if( DM::range_check && (n<0 || n>int(length())) ) |
|
492 fault("UndirPath::nth: index out of range"); |
|
493 return i=NodeIt(*this, n); |
|
494 } |
|
495 |
|
496 /// \brief Initializes edge iterator to point to the edge of a given index. |
|
497 EdgeIt& nth(EdgeIt &i, int n) const { |
|
498 if( DM::range_check && (n<0 || n>=int(length())) ) |
|
499 fault("UndirPath::nth: index out of range"); |
|
500 return i=EdgeIt(*this, n); |
|
501 } |
|
502 |
|
503 /// Checks validity of a node or edge iterator. |
|
504 template<typename It> |
|
505 static |
|
506 bool valid(const It &i) { return i.valid(); } |
|
507 |
|
508 /// Steps the given node or edge iterator. |
|
509 template<typename It> |
|
510 static |
|
511 It& next(It &e) { |
|
512 if( DM::range_check && !e.valid() ) |
|
513 fault("UndirPath::next() on invalid iterator"); |
|
514 return ++e; |
|
515 } |
|
516 |
|
517 /// \brief Returns node iterator pointing to the head node of the |
|
518 /// given edge iterator. |
|
519 NodeIt head(const EdgeIt& e) const { |
|
520 if( DM::range_check && !e.valid() ) |
|
521 fault("UndirPath::head() on invalid iterator"); |
|
522 return NodeIt(*this, e.idx+1); |
|
523 } |
|
524 |
|
525 /// \brief Returns node iterator pointing to the tail node of the |
|
526 /// given edge iterator. |
|
527 NodeIt tail(const EdgeIt& e) const { |
|
528 if( DM::range_check && !e.valid() ) |
|
529 fault("UndirPath::tail() on invalid iterator"); |
|
530 return NodeIt(*this, e.idx); |
|
531 } |
|
532 |
|
533 |
|
534 |
|
535 /** |
|
536 * \brief Iterator class to iterate on the edges of the paths |
|
537 * |
|
538 * \ingroup paths |
|
539 * This class is used to iterate on the edges of the paths |
|
540 * |
|
541 * Of course it converts to Graph::Edge |
|
542 * |
|
543 * \todo Its interface differs from the standard edge iterator. |
|
544 * Yes, it shouldn't. |
|
545 */ |
|
546 class EdgeIt { |
|
547 friend class UndirPath; |
|
548 |
|
549 int idx; |
|
550 const UndirPath *p; |
|
551 public: |
|
552 /// Default constructor |
|
553 EdgeIt() {} |
|
554 /// Invalid constructor |
|
555 EdgeIt(Invalid) : idx(-1), p(0) {} |
|
556 /// Constructor with starting point |
|
557 EdgeIt(const UndirPath &_p, int _idx = 0) : |
|
558 idx(_idx), p(&_p) { validate(); } |
|
559 |
|
560 ///Validity check |
|
561 bool valid() const { return idx!=-1; } |
|
562 |
|
563 ///Conversion to Graph::Edge |
|
564 operator GraphEdge () const { |
|
565 return valid() ? p->edges[idx] : INVALID; |
|
566 } |
|
567 /// Next edge |
|
568 EdgeIt& operator++() { ++idx; validate(); return *this; } |
|
569 |
|
570 /// Comparison operator |
|
571 bool operator==(const EdgeIt& e) const { return idx==e.idx; } |
|
572 /// Comparison operator |
|
573 bool operator!=(const EdgeIt& e) const { return idx!=e.idx; } |
|
574 /// Comparison operator |
|
575 bool operator<(const EdgeIt& e) const { return idx<e.idx; } |
|
576 |
|
577 private: |
|
578 // FIXME: comparison between signed and unsigned... |
|
579 // Jo ez igy? Vagy esetleg legyen a length() int? |
|
580 void validate() { if( size_t(idx) >= p->length() ) idx=-1; } |
|
581 }; |
|
582 |
|
583 /** |
|
584 * \brief Iterator class to iterate on the nodes of the paths |
|
585 * |
|
586 * \ingroup paths |
|
587 * This class is used to iterate on the nodes of the paths |
|
588 * |
|
589 * Of course it converts to Graph::Node |
|
590 * |
|
591 * \todo Its interface differs from the standard node iterator. |
|
592 * Yes, it shouldn't. |
|
593 */ |
|
594 class NodeIt { |
|
595 friend class UndirPath; |
|
596 |
|
597 int idx; |
|
598 const UndirPath *p; |
|
599 public: |
|
600 /// Default constructor |
|
601 NodeIt() {} |
|
602 /// Invalid constructor |
|
603 NodeIt(Invalid) : idx(-1), p(0) {} |
|
604 /// Constructor with starting point |
|
605 NodeIt(const UndirPath &_p, int _idx = 0) : |
|
606 idx(_idx), p(&_p) { validate(); } |
|
607 |
|
608 ///Validity check |
|
609 bool valid() const { return idx!=-1; } |
|
610 |
|
611 ///Conversion to Graph::Node |
|
612 operator const GraphNode& () const { |
|
613 if(idx >= p->length()) |
|
614 return p->to(); |
|
615 else if(idx >= 0) |
|
616 return p->gr->tail(p->edges[idx]); |
|
617 else |
|
618 return INVALID; |
|
619 } |
|
620 /// Next node |
|
621 NodeIt& operator++() { ++idx; validate(); return *this; } |
|
622 |
|
623 /// Comparison operator |
|
624 bool operator==(const NodeIt& e) const { return idx==e.idx; } |
|
625 /// Comparison operator |
|
626 bool operator!=(const NodeIt& e) const { return idx!=e.idx; } |
|
627 /// Comparison operator |
|
628 bool operator<(const NodeIt& e) const { return idx<e.idx; } |
|
629 |
|
630 private: |
|
631 void validate() { if( size_t(idx) > p->length() ) idx=-1; } |
|
632 }; |
|
633 |
|
634 friend class Builder; |
|
635 |
|
636 /** |
|
637 * \brief Class to build paths |
|
638 * |
|
639 * \ingroup paths |
|
640 * This class is used to fill a path with edges. |
|
641 * |
|
642 * You can push new edges to the front and to the back of the path in |
|
643 * arbitrary order then you should commit these changes to the graph. |
|
644 * |
|
645 * Fundamentally, for most "Paths" (classes fulfilling the |
|
646 * PathConcept) while the builder is active (after the first modifying |
|
647 * operation and until the commit()) the original Path is in a |
|
648 * "transitional" state (operations ot it have undefined result). But |
|
649 * in the case of UndirPath the original path is unchanged until the |
|
650 * commit. However we don't recomend that you use this feature. |
|
651 */ |
|
652 class Builder { |
|
653 UndirPath &P; |
|
654 Container front, back; |
|
655 |
|
656 public: |
|
657 ///\param _P the path you want to fill in. |
|
658 /// |
|
659 Builder(UndirPath &_P) : P(_P) {} |
|
660 |
|
661 /// Sets the starting node of the path. |
|
662 |
|
663 /// Sets the starting node of the path. Edge added to the path |
|
664 /// afterwards have to be incident to this node. |
|
665 /// It should be called iff the path is empty and before any call to |
|
666 /// \ref pushFront() or \ref pushBack() |
|
667 void setStart(const GraphNode &) {} |
|
668 |
|
669 ///Push a new edge to the front of the path |
|
670 |
|
671 ///Push a new edge to the front of the path. |
|
672 ///\sa setStart |
|
673 void pushFront(const GraphEdge& e) { |
|
674 if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) { |
|
675 fault("UndirPath::Builder::pushFront: nonincident edge"); |
|
676 } |
|
677 front.push_back(e); |
|
678 } |
|
679 |
|
680 ///Push a new edge to the back of the path |
|
681 |
|
682 ///Push a new edge to the back of the path. |
|
683 ///\sa setStart |
|
684 void pushBack(const GraphEdge& e) { |
|
685 if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) { |
|
686 fault("UndirPath::Builder::pushBack: nonincident edge"); |
|
687 } |
|
688 back.push_back(e); |
|
689 } |
|
690 |
|
691 ///Commit the changes to the path. |
|
692 void commit() { |
|
693 if( !(front.empty() && back.empty()) ) { |
|
694 Container tmp; |
|
695 tmp.reserve(front.size()+back.size()+P.length()); |
|
696 tmp.insert(tmp.end(), front.rbegin(), front.rend()); |
|
697 tmp.insert(tmp.end(), P.edges.begin(), P.edges.end()); |
|
698 tmp.insert(tmp.end(), back.begin(), back.end()); |
|
699 P.edges.swap(tmp); |
|
700 front.clear(); |
|
701 back.clear(); |
|
702 } |
|
703 } |
|
704 |
|
705 // FIXME: Hmm, pontosan hogy is kene ezt csinalni? |
|
706 // Hogy kenyelmes egy ilyet hasznalni? |
|
707 |
|
708 ///Reserve storage in advance for the builder |
|
709 |
|
710 ///If you know an reasonable upper bound of the number of the edges |
|
711 ///to add, using this function you can speed up the building. |
|
712 void reserve(size_t r) { |
|
713 front.reserve(r); |
|
714 back.reserve(r); |
|
715 } |
|
716 |
|
717 private: |
|
718 bool empty() { |
|
719 return front.empty() && back.empty() && P.empty(); |
|
720 } |
|
721 |
|
722 GraphNode from() const { |
|
723 if( ! front.empty() ) |
|
724 return P.gr->tail(front[front.size()-1]); |
|
725 else if( ! P.empty() ) |
|
726 return P.gr->tail(P.edges[0]); |
|
727 else if( ! back.empty() ) |
|
728 return P.gr->tail(back[0]); |
|
729 else |
|
730 return INVALID; |
|
731 } |
|
732 GraphNode to() const { |
|
733 if( ! back.empty() ) |
|
734 return P.gr->head(back[back.size()-1]); |
|
735 else if( ! P.empty() ) |
|
736 return P.gr->head(P.edges[P.length()-1]); |
|
737 else if( ! front.empty() ) |
|
738 return P.gr->head(front[0]); |
|
739 else |
|
740 return INVALID; |
|
741 } |
|
742 |
|
743 }; |
|
744 |
|
745 }; |
|
746 |
|
747 |
|
748 |
|
749 |
|
750 |
|
751 |
|
752 |
|
753 |
|
754 |
|
755 |
|
756 /**********************************************************************/ |
|
757 |
|
758 |
|
759 /* Ennek az allocatorosdinak sokkal jobban utana kene nezni a hasznalata |
|
760 elott. Eleg bonyinak nez ki, ahogyan azokat az STL-ben hasznaljak. */ |
|
761 |
|
762 template<typename Graph> |
|
763 class DynamicPath { |
|
764 |
|
765 public: |
|
766 typedef typename Graph::Edge GraphEdge; |
|
767 typedef typename Graph::Node GraphNode; |
|
768 class NodeIt; |
|
769 class EdgeIt; |
|
770 |
|
771 protected: |
|
772 Graph& G; |
|
773 // FIXME: ehelyett eleg lenne tarolni ket boolt: a ket szelso el |
|
774 // iranyitasat: |
|
775 GraphNode _first, _last; |
|
776 typedef std::deque<GraphEdge> Container; |
|
777 Container edges; |
|
778 |
|
779 public: |
|
780 |
|
781 DynamicPath(Graph &_G) : G(_G), _first(INVALID), _last(INVALID) {} |
|
782 |
|
783 /// Subpath defined by two nodes. |
|
784 /// Nodes may be in reversed order, then |
|
785 /// we contstruct the reversed path. |
|
786 DynamicPath(const DynamicPath &P, const NodeIt &a, const NodeIt &b); |
|
787 /// Subpath defined by two edges. Contains edges in [a,b) |
|
788 /// It is an error if the two edges are not in order! |
|
789 DynamicPath(const DynamicPath &P, const EdgeIt &a, const EdgeIt &b); |
|
790 |
|
791 size_t length() const { return edges.size(); } |
|
792 GraphNode from() const { return _first; } |
|
793 GraphNode to() const { return _last; } |
|
794 |
|
795 NodeIt& first(NodeIt &n) const { return nth(n, 0); } |
|
796 EdgeIt& first(EdgeIt &e) const { return nth(e, 0); } |
|
797 template<typename It> |
|
798 It first() const { |
|
799 It e; |
|
800 first(e); |
|
801 return e; |
|
802 } |
|
803 |
|
804 NodeIt& nth(NodeIt &, size_t) const; |
|
805 EdgeIt& nth(EdgeIt &, size_t) const; |
|
806 template<typename It> |
|
807 It nth(size_t n) const { |
|
808 It e; |
|
809 nth(e, n); |
|
810 return e; |
|
811 } |
|
812 |
|
813 bool valid(const NodeIt &n) const { return n.idx <= length(); } |
|
814 bool valid(const EdgeIt &e) const { return e.it < edges.end(); } |
|
815 |
|
816 bool isForward(const EdgeIt &e) const { return e.forw; } |
|
817 |
|
818 /// index of a node on the path. Returns length+2 for the invalid NodeIt |
|
819 int index(const NodeIt &n) const { return n.idx; } |
|
820 /// index of an edge on the path. Returns length+1 for the invalid EdgeIt |
|
821 int index(const EdgeIt &e) const { return e.it - edges.begin(); } |
|
822 |
|
823 EdgeIt& next(EdgeIt &e) const; |
|
824 NodeIt& next(NodeIt &n) const; |
|
825 template <typename It> |
|
826 It getNext(It it) const { |
|
827 It tmp(it); return next(tmp); |
|
828 } |
|
829 |
|
830 // A path is constructed using the following four functions. |
|
831 // They return false if the requested operation is inconsistent |
|
832 // with the path constructed so far. |
|
833 // If your path has only one edge you MUST set either "from" or "to"! |
|
834 // So you probably SHOULD call it in any case to be safe (and check the |
|
835 // returned value to check if your path is consistent with your idea). |
|
836 bool pushFront(const GraphEdge &e); |
|
837 bool pushBack(const GraphEdge &e); |
|
838 bool setFrom(const GraphNode &n); |
|
839 bool setTo(const GraphNode &n); |
|
840 |
|
841 // WARNING: these two functions return the head/tail of an edge with |
|
842 // respect to the direction of the path! |
|
843 // So G.head(P.graphEdge(e)) == P.graphNode(P.head(e)) holds only if |
|
844 // P.forward(e) is true (or the edge is a loop)! |
|
845 NodeIt head(const EdgeIt& e) const; |
|
846 NodeIt tail(const EdgeIt& e) const; |
|
847 |
|
848 // FIXME: ezeknek valami jobb nev kellene!!! |
|
849 GraphEdge graphEdge(const EdgeIt& e) const; |
|
850 GraphNode graphNode(const NodeIt& n) const; |
|
851 |
|
852 |
|
853 /*** Iterator classes ***/ |
|
854 class EdgeIt { |
|
855 friend class DynamicPath; |
|
856 |
|
857 typename Container::const_iterator it; |
|
858 bool forw; |
|
859 public: |
|
860 // FIXME: jarna neki ilyen is... |
|
861 // EdgeIt(Invalid); |
|
862 |
|
863 bool forward() const { return forw; } |
|
864 |
|
865 bool operator==(const EdgeIt& e) const { return it==e.it; } |
|
866 bool operator!=(const EdgeIt& e) const { return it!=e.it; } |
|
867 bool operator<(const EdgeIt& e) const { return it<e.it; } |
|
868 }; |
|
869 |
|
870 class NodeIt { |
|
871 friend class DynamicPath; |
|
872 |
|
873 size_t idx; |
|
874 bool tail; // Is this node the tail of the edge with same idx? |
|
875 |
|
876 public: |
|
877 // FIXME: jarna neki ilyen is... |
|
878 // NodeIt(Invalid); |
|
879 |
|
880 bool operator==(const NodeIt& n) const { return idx==n.idx; } |
|
881 bool operator!=(const NodeIt& n) const { return idx!=n.idx; } |
|
882 bool operator<(const NodeIt& n) const { return idx<n.idx; } |
|
883 }; |
|
884 |
|
885 private: |
|
886 bool edgeIncident(const GraphEdge &e, const GraphNode &a, |
|
887 GraphNode &b); |
|
888 bool connectTwoEdges(const GraphEdge &e, const GraphEdge &f); |
|
889 }; |
|
890 |
|
891 template<typename Gr> |
|
892 typename DynamicPath<Gr>::EdgeIt& |
|
893 DynamicPath<Gr>::next(DynamicPath::EdgeIt &e) const { |
|
894 if( e.it == edges.end() ) |
|
895 return e; |
|
896 |
|
897 GraphNode common_node = ( e.forw ? G.head(*e.it) : G.tail(*e.it) ); |
|
898 ++e.it; |
|
899 |
|
900 // Invalid edgeit is always forward :) |
|
901 if( e.it == edges.end() ) { |
|
902 e.forw = true; |
|
903 return e; |
|
904 } |
|
905 |
|
906 e.forw = ( G.tail(*e.it) == common_node ); |
|
907 return e; |
|
908 } |
|
909 |
|
910 template<typename Gr> |
|
911 typename DynamicPath<Gr>::NodeIt& DynamicPath<Gr>::next(NodeIt &n) const { |
|
912 if( n.idx >= length() ) { |
|
913 // FIXME: invalid |
|
914 n.idx = length()+1; |
|
915 return n; |
|
916 } |
|
917 |
|
918 |
|
919 GraphNode next_node = ( n.tail ? G.head(edges[n.idx]) : |
|
920 G.tail(edges[n.idx]) ); |
|
921 ++n.idx; |
|
922 if( n.idx < length() ) { |
|
923 n.tail = ( next_node == G.tail(edges[n.idx]) ); |
|
924 } |
|
925 else { |
|
926 n.tail = true; |
|
927 } |
|
928 |
|
929 return n; |
|
930 } |
|
931 |
|
932 template<typename Gr> |
|
933 bool DynamicPath<Gr>::edgeIncident(const GraphEdge &e, const GraphNode &a, |
|
934 GraphNode &b) { |
|
935 if( G.tail(e) == a ) { |
|
936 b=G.head(e); |
|
937 return true; |
|
938 } |
|
939 if( G.head(e) == a ) { |
|
940 b=G.tail(e); |
|
941 return true; |
|
942 } |
|
943 return false; |
|
944 } |
|
945 |
|
946 template<typename Gr> |
|
947 bool DynamicPath<Gr>::connectTwoEdges(const GraphEdge &e, |
|
948 const GraphEdge &f) { |
|
949 if( edgeIncident(f, G.tail(e), _last) ) { |
|
950 _first = G.head(e); |
|
951 return true; |
|
952 } |
|
953 if( edgeIncident(f, G.head(e), _last) ) { |
|
954 _first = G.tail(e); |
|
955 return true; |
|
956 } |
|
957 return false; |
|
958 } |
|
959 |
|
960 template<typename Gr> |
|
961 bool DynamicPath<Gr>::pushFront(const GraphEdge &e) { |
|
962 if( G.valid(_first) ) { |
|
963 if( edgeIncident(e, _first, _first) ) { |
|
964 edges.push_front(e); |
|
965 return true; |
|
966 } |
|
967 else |
|
968 return false; |
|
969 } |
|
970 else if( length() < 1 || connectTwoEdges(e, edges[0]) ) { |
|
971 edges.push_front(e); |
|
972 return true; |
|
973 } |
|
974 else |
|
975 return false; |
|
976 } |
|
977 |
|
978 template<typename Gr> |
|
979 bool DynamicPath<Gr>::pushBack(const GraphEdge &e) { |
|
980 if( G.valid(_last) ) { |
|
981 if( edgeIncident(e, _last, _last) ) { |
|
982 edges.push_back(e); |
|
983 return true; |
|
984 } |
|
985 else |
|
986 return false; |
|
987 } |
|
988 else if( length() < 1 || connectTwoEdges(edges[0], e) ) { |
|
989 edges.push_back(e); |
|
990 return true; |
|
991 } |
|
992 else |
|
993 return false; |
|
994 } |
|
995 |
|
996 |
|
997 template<typename Gr> |
|
998 bool DynamicPath<Gr>::setFrom(const GraphNode &n) { |
|
999 if( G.valid(_first) ) { |
|
1000 return _first == n; |
|
1001 } |
|
1002 else { |
|
1003 if( length() > 0) { |
|
1004 if( edgeIncident(edges[0], n, _last) ) { |
|
1005 _first = n; |
|
1006 return true; |
|
1007 } |
|
1008 else return false; |
|
1009 } |
|
1010 else { |
|
1011 _first = _last = n; |
|
1012 return true; |
|
1013 } |
|
1014 } |
|
1015 } |
|
1016 |
|
1017 template<typename Gr> |
|
1018 bool DynamicPath<Gr>::setTo(const GraphNode &n) { |
|
1019 if( G.valid(_last) ) { |
|
1020 return _last == n; |
|
1021 } |
|
1022 else { |
|
1023 if( length() > 0) { |
|
1024 if( edgeIncident(edges[0], n, _first) ) { |
|
1025 _last = n; |
|
1026 return true; |
|
1027 } |
|
1028 else return false; |
|
1029 } |
|
1030 else { |
|
1031 _first = _last = n; |
|
1032 return true; |
|
1033 } |
|
1034 } |
|
1035 } |
|
1036 |
|
1037 |
|
1038 template<typename Gr> |
|
1039 typename DynamicPath<Gr>::NodeIt |
|
1040 DynamicPath<Gr>::tail(const EdgeIt& e) const { |
|
1041 NodeIt n; |
|
1042 |
|
1043 if( e.it == edges.end() ) { |
|
1044 // FIXME: invalid-> invalid |
|
1045 n.idx = length() + 1; |
|
1046 n.tail = true; |
|
1047 return n; |
|
1048 } |
|
1049 |
|
1050 n.idx = e.it-edges.begin(); |
|
1051 n.tail = e.forw; |
|
1052 return n; |
|
1053 } |
|
1054 |
|
1055 template<typename Gr> |
|
1056 typename DynamicPath<Gr>::NodeIt |
|
1057 DynamicPath<Gr>::head(const EdgeIt& e) const { |
|
1058 if( e.it == edges.end()-1 ) { |
|
1059 return _last; |
|
1060 } |
|
1061 |
|
1062 EdgeIt next_edge = e; |
|
1063 next(next_edge); |
|
1064 return tail(next_edge); |
|
1065 } |
|
1066 |
|
1067 template<typename Gr> |
|
1068 typename DynamicPath<Gr>::GraphEdge |
|
1069 DynamicPath<Gr>::graphEdge(const EdgeIt& e) const { |
|
1070 if( e.it != edges.end() ) { |
|
1071 return *e.it; |
|
1072 } |
|
1073 else { |
|
1074 return INVALID; |
|
1075 } |
|
1076 } |
|
1077 |
|
1078 template<typename Gr> |
|
1079 typename DynamicPath<Gr>::GraphNode |
|
1080 DynamicPath<Gr>::graphNode(const NodeIt& n) const { |
|
1081 if( n.idx < length() ) { |
|
1082 return n.tail ? G.tail(edges[n.idx]) : G.head(edges[n.idx]); |
|
1083 } |
|
1084 else if( n.idx == length() ) { |
|
1085 return _last; |
|
1086 } |
|
1087 else { |
|
1088 return INVALID; |
|
1089 } |
|
1090 } |
|
1091 |
|
1092 template<typename Gr> |
|
1093 typename DynamicPath<Gr>::EdgeIt& |
|
1094 DynamicPath<Gr>::nth(EdgeIt &e, size_t k) const { |
|
1095 if( k>=length() ) { |
|
1096 // FIXME: invalid EdgeIt |
|
1097 e.it = edges.end(); |
|
1098 e.forw = true; |
|
1099 return e; |
|
1100 } |
|
1101 |
|
1102 e.it = edges.begin()+k; |
|
1103 if(k==0) { |
|
1104 e.forw = ( G.tail(*e.it) == _first ); |
|
1105 } |
|
1106 else { |
|
1107 e.forw = ( G.tail(*e.it) == G.tail(edges[k-1]) || |
|
1108 G.tail(*e.it) == G.head(edges[k-1]) ); |
|
1109 } |
|
1110 return e; |
|
1111 } |
|
1112 |
|
1113 template<typename Gr> |
|
1114 typename DynamicPath<Gr>::NodeIt& |
|
1115 DynamicPath<Gr>::nth(NodeIt &n, size_t k) const { |
|
1116 if( k>length() ) { |
|
1117 // FIXME: invalid NodeIt |
|
1118 n.idx = length()+1; |
|
1119 n.tail = true; |
|
1120 return n; |
|
1121 } |
|
1122 if( k==length() ) { |
|
1123 n.idx = length(); |
|
1124 n.tail = true; |
|
1125 return n; |
|
1126 } |
|
1127 n = tail(nth<EdgeIt>(k)); |
|
1128 return n; |
|
1129 } |
|
1130 |
|
1131 // Reszut konstruktorok: |
|
1132 |
|
1133 |
|
1134 template<typename Gr> |
|
1135 DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const EdgeIt &a, |
|
1136 const EdgeIt &b) : |
|
1137 G(P.G), edges(a.it, b.it) // WARNING: if b.it < a.it this will blow up! |
|
1138 { |
|
1139 if( G.valid(P._first) && a.it < P.edges.end() ) { |
|
1140 _first = ( a.forw ? G.tail(*a.it) : G.head(*a.it) ); |
|
1141 if( b.it < P.edges.end() ) { |
|
1142 _last = ( b.forw ? G.tail(*b.it) : G.head(*b.it) ); |
|
1143 } |
|
1144 else { |
|
1145 _last = P._last; |
|
1146 } |
|
1147 } |
|
1148 } |
|
1149 |
|
1150 template<typename Gr> |
|
1151 DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const NodeIt &a, |
|
1152 const NodeIt &b) : G(P.G) |
|
1153 { |
|
1154 if( !P.valid(a) || !P.valid(b) ) |
|
1155 return; |
|
1156 |
|
1157 int ai = a.idx, bi = b.idx; |
|
1158 if( bi<ai ) |
|
1159 std::swap(ai,bi); |
|
1160 |
|
1161 edges.resize(bi-ai); |
|
1162 copy(P.edges.begin()+ai, P.edges.begin()+bi, edges.begin()); |
|
1163 |
|
1164 _first = P.graphNode(a); |
|
1165 _last = P.graphNode(b); |
|
1166 } |
|
1167 |
|
1168 ///@} |
|
1169 |
|
1170 } // namespace hugo |
|
1171 |
|
1172 #endif // HUGO_PATH_H |