|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2008 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_CANCEL_AND_TIGHTEN_H |
|
20 #define LEMON_CANCEL_AND_TIGHTEN_H |
|
21 |
|
22 /// \ingroup min_cost_flow |
|
23 /// |
|
24 /// \file |
|
25 /// \brief Cancel and Tighten algorithm for finding a minimum cost flow. |
|
26 |
|
27 #include <vector> |
|
28 |
|
29 #include <lemon/circulation.h> |
|
30 #include <lemon/bellman_ford.h> |
|
31 #include <lemon/min_mean_cycle.h> |
|
32 #include <lemon/graph_adaptor.h> |
|
33 #include <lemon/tolerance.h> |
|
34 #include <lemon/math.h> |
|
35 |
|
36 #include <lemon/static_graph.h> |
|
37 |
|
38 namespace lemon { |
|
39 |
|
40 /// \addtogroup min_cost_flow |
|
41 /// @{ |
|
42 |
|
43 /// \brief Implementation of the Cancel and Tighten algorithm for |
|
44 /// finding a minimum cost flow. |
|
45 /// |
|
46 /// \ref CancelAndTighten implements the Cancel and Tighten algorithm for |
|
47 /// finding a minimum cost flow. |
|
48 /// |
|
49 /// \tparam Graph The directed graph type the algorithm runs on. |
|
50 /// \tparam LowerMap The type of the lower bound map. |
|
51 /// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
52 /// \tparam CostMap The type of the cost (length) map. |
|
53 /// \tparam SupplyMap The type of the supply map. |
|
54 /// |
|
55 /// \warning |
|
56 /// - Edge capacities and costs should be \e non-negative \e integers. |
|
57 /// - Supply values should be \e signed \e integers. |
|
58 /// - The value types of the maps should be convertible to each other. |
|
59 /// - \c CostMap::Value must be signed type. |
|
60 /// |
|
61 /// \author Peter Kovacs |
|
62 template < typename Graph, |
|
63 typename LowerMap = typename Graph::template EdgeMap<int>, |
|
64 typename CapacityMap = typename Graph::template EdgeMap<int>, |
|
65 typename CostMap = typename Graph::template EdgeMap<int>, |
|
66 typename SupplyMap = typename Graph::template NodeMap<int> > |
|
67 class CancelAndTighten |
|
68 { |
|
69 GRAPH_TYPEDEFS(typename Graph); |
|
70 |
|
71 typedef typename CapacityMap::Value Capacity; |
|
72 typedef typename CostMap::Value Cost; |
|
73 typedef typename SupplyMap::Value Supply; |
|
74 typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap; |
|
75 typedef typename Graph::template NodeMap<Supply> SupplyNodeMap; |
|
76 |
|
77 typedef ResGraphAdaptor< const Graph, Capacity, |
|
78 CapacityEdgeMap, CapacityEdgeMap > ResGraph; |
|
79 |
|
80 public: |
|
81 |
|
82 /// The type of the flow map. |
|
83 typedef typename Graph::template EdgeMap<Capacity> FlowMap; |
|
84 /// The type of the potential map. |
|
85 typedef typename Graph::template NodeMap<Cost> PotentialMap; |
|
86 |
|
87 private: |
|
88 |
|
89 /// \brief Map adaptor class for handling residual edge costs. |
|
90 /// |
|
91 /// Map adaptor class for handling residual edge costs. |
|
92 class ResidualCostMap : public MapBase<typename ResGraph::Edge, Cost> |
|
93 { |
|
94 typedef typename ResGraph::Edge Edge; |
|
95 |
|
96 private: |
|
97 |
|
98 const CostMap &_cost_map; |
|
99 |
|
100 public: |
|
101 |
|
102 ///\e |
|
103 ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {} |
|
104 |
|
105 ///\e |
|
106 Cost operator[](const Edge &e) const { |
|
107 return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
108 } |
|
109 |
|
110 }; //class ResidualCostMap |
|
111 |
|
112 /// \brief Map adaptor class for handling reduced edge costs. |
|
113 /// |
|
114 /// Map adaptor class for handling reduced edge costs. |
|
115 class ReducedCostMap : public MapBase<Edge, Cost> |
|
116 { |
|
117 private: |
|
118 |
|
119 const Graph &_gr; |
|
120 const CostMap &_cost_map; |
|
121 const PotentialMap &_pot_map; |
|
122 |
|
123 public: |
|
124 |
|
125 ///\e |
|
126 ReducedCostMap( const Graph &gr, |
|
127 const CostMap &cost_map, |
|
128 const PotentialMap &pot_map ) : |
|
129 _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} |
|
130 |
|
131 ///\e |
|
132 inline Cost operator[](const Edge &e) const { |
|
133 return _cost_map[e] + _pot_map[_gr.source(e)] |
|
134 - _pot_map[_gr.target(e)]; |
|
135 } |
|
136 |
|
137 }; //class ReducedCostMap |
|
138 |
|
139 struct BFOperationTraits { |
|
140 static double zero() { return 0; } |
|
141 |
|
142 static double infinity() { |
|
143 return std::numeric_limits<double>::infinity(); |
|
144 } |
|
145 |
|
146 static double plus(const double& left, const double& right) { |
|
147 return left + right; |
|
148 } |
|
149 |
|
150 static bool less(const double& left, const double& right) { |
|
151 return left + 1e-6 < right; |
|
152 } |
|
153 }; // class BFOperationTraits |
|
154 |
|
155 private: |
|
156 |
|
157 // The directed graph the algorithm runs on |
|
158 const Graph &_graph; |
|
159 // The original lower bound map |
|
160 const LowerMap *_lower; |
|
161 // The modified capacity map |
|
162 CapacityEdgeMap _capacity; |
|
163 // The original cost map |
|
164 const CostMap &_cost; |
|
165 // The modified supply map |
|
166 SupplyNodeMap _supply; |
|
167 bool _valid_supply; |
|
168 |
|
169 // Edge map of the current flow |
|
170 FlowMap *_flow; |
|
171 bool _local_flow; |
|
172 // Node map of the current potentials |
|
173 PotentialMap *_potential; |
|
174 bool _local_potential; |
|
175 |
|
176 // The residual graph |
|
177 ResGraph *_res_graph; |
|
178 // The residual cost map |
|
179 ResidualCostMap _res_cost; |
|
180 |
|
181 public: |
|
182 |
|
183 /// \brief General constructor (with lower bounds). |
|
184 /// |
|
185 /// General constructor (with lower bounds). |
|
186 /// |
|
187 /// \param graph The directed graph the algorithm runs on. |
|
188 /// \param lower The lower bounds of the edges. |
|
189 /// \param capacity The capacities (upper bounds) of the edges. |
|
190 /// \param cost The cost (length) values of the edges. |
|
191 /// \param supply The supply values of the nodes (signed). |
|
192 CancelAndTighten( const Graph &graph, |
|
193 const LowerMap &lower, |
|
194 const CapacityMap &capacity, |
|
195 const CostMap &cost, |
|
196 const SupplyMap &supply ) : |
|
197 _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
198 _supply(supply), _flow(NULL), _local_flow(false), |
|
199 _potential(NULL), _local_potential(false), |
|
200 _res_graph(NULL), _res_cost(_cost) |
|
201 { |
|
202 // Check the sum of supply values |
|
203 Supply sum = 0; |
|
204 for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
205 _valid_supply = sum == 0; |
|
206 |
|
207 // Remove non-zero lower bounds |
|
208 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
209 if (lower[e] != 0) { |
|
210 _capacity[e] -= lower[e]; |
|
211 _supply[_graph.source(e)] -= lower[e]; |
|
212 _supply[_graph.target(e)] += lower[e]; |
|
213 } |
|
214 } |
|
215 } |
|
216 |
|
217 /// \brief General constructor (without lower bounds). |
|
218 /// |
|
219 /// General constructor (without lower bounds). |
|
220 /// |
|
221 /// \param graph The directed graph the algorithm runs on. |
|
222 /// \param capacity The capacities (upper bounds) of the edges. |
|
223 /// \param cost The cost (length) values of the edges. |
|
224 /// \param supply The supply values of the nodes (signed). |
|
225 CancelAndTighten( const Graph &graph, |
|
226 const CapacityMap &capacity, |
|
227 const CostMap &cost, |
|
228 const SupplyMap &supply ) : |
|
229 _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
230 _supply(supply), _flow(NULL), _local_flow(false), |
|
231 _potential(NULL), _local_potential(false), |
|
232 _res_graph(NULL), _res_cost(_cost) |
|
233 { |
|
234 // Check the sum of supply values |
|
235 Supply sum = 0; |
|
236 for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
237 _valid_supply = sum == 0; |
|
238 } |
|
239 |
|
240 /// \brief Simple constructor (with lower bounds). |
|
241 /// |
|
242 /// Simple constructor (with lower bounds). |
|
243 /// |
|
244 /// \param graph The directed graph the algorithm runs on. |
|
245 /// \param lower The lower bounds of the edges. |
|
246 /// \param capacity The capacities (upper bounds) of the edges. |
|
247 /// \param cost The cost (length) values of the edges. |
|
248 /// \param s The source node. |
|
249 /// \param t The target node. |
|
250 /// \param flow_value The required amount of flow from node \c s |
|
251 /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
252 CancelAndTighten( const Graph &graph, |
|
253 const LowerMap &lower, |
|
254 const CapacityMap &capacity, |
|
255 const CostMap &cost, |
|
256 Node s, Node t, |
|
257 Supply flow_value ) : |
|
258 _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
259 _supply(graph, 0), _flow(NULL), _local_flow(false), |
|
260 _potential(NULL), _local_potential(false), |
|
261 _res_graph(NULL), _res_cost(_cost) |
|
262 { |
|
263 // Remove non-zero lower bounds |
|
264 _supply[s] = flow_value; |
|
265 _supply[t] = -flow_value; |
|
266 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
267 if (lower[e] != 0) { |
|
268 _capacity[e] -= lower[e]; |
|
269 _supply[_graph.source(e)] -= lower[e]; |
|
270 _supply[_graph.target(e)] += lower[e]; |
|
271 } |
|
272 } |
|
273 _valid_supply = true; |
|
274 } |
|
275 |
|
276 /// \brief Simple constructor (without lower bounds). |
|
277 /// |
|
278 /// Simple constructor (without lower bounds). |
|
279 /// |
|
280 /// \param graph The directed graph the algorithm runs on. |
|
281 /// \param capacity The capacities (upper bounds) of the edges. |
|
282 /// \param cost The cost (length) values of the edges. |
|
283 /// \param s The source node. |
|
284 /// \param t The target node. |
|
285 /// \param flow_value The required amount of flow from node \c s |
|
286 /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
287 CancelAndTighten( const Graph &graph, |
|
288 const CapacityMap &capacity, |
|
289 const CostMap &cost, |
|
290 Node s, Node t, |
|
291 Supply flow_value ) : |
|
292 _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
293 _supply(graph, 0), _flow(NULL), _local_flow(false), |
|
294 _potential(NULL), _local_potential(false), |
|
295 _res_graph(NULL), _res_cost(_cost) |
|
296 { |
|
297 _supply[s] = flow_value; |
|
298 _supply[t] = -flow_value; |
|
299 _valid_supply = true; |
|
300 } |
|
301 |
|
302 /// Destructor. |
|
303 ~CancelAndTighten() { |
|
304 if (_local_flow) delete _flow; |
|
305 if (_local_potential) delete _potential; |
|
306 delete _res_graph; |
|
307 } |
|
308 |
|
309 /// \brief Set the flow map. |
|
310 /// |
|
311 /// Set the flow map. |
|
312 /// |
|
313 /// \return \c (*this) |
|
314 CancelAndTighten& flowMap(FlowMap &map) { |
|
315 if (_local_flow) { |
|
316 delete _flow; |
|
317 _local_flow = false; |
|
318 } |
|
319 _flow = ↦ |
|
320 return *this; |
|
321 } |
|
322 |
|
323 /// \brief Set the potential map. |
|
324 /// |
|
325 /// Set the potential map. |
|
326 /// |
|
327 /// \return \c (*this) |
|
328 CancelAndTighten& potentialMap(PotentialMap &map) { |
|
329 if (_local_potential) { |
|
330 delete _potential; |
|
331 _local_potential = false; |
|
332 } |
|
333 _potential = ↦ |
|
334 return *this; |
|
335 } |
|
336 |
|
337 /// \name Execution control |
|
338 |
|
339 /// @{ |
|
340 |
|
341 /// \brief Run the algorithm. |
|
342 /// |
|
343 /// Run the algorithm. |
|
344 /// |
|
345 /// \return \c true if a feasible flow can be found. |
|
346 bool run() { |
|
347 return init() && start(); |
|
348 } |
|
349 |
|
350 /// @} |
|
351 |
|
352 /// \name Query Functions |
|
353 /// The result of the algorithm can be obtained using these |
|
354 /// functions.\n |
|
355 /// \ref lemon::CancelAndTighten::run() "run()" must be called before |
|
356 /// using them. |
|
357 |
|
358 /// @{ |
|
359 |
|
360 /// \brief Return a const reference to the edge map storing the |
|
361 /// found flow. |
|
362 /// |
|
363 /// Return a const reference to the edge map storing the found flow. |
|
364 /// |
|
365 /// \pre \ref run() must be called before using this function. |
|
366 const FlowMap& flowMap() const { |
|
367 return *_flow; |
|
368 } |
|
369 |
|
370 /// \brief Return a const reference to the node map storing the |
|
371 /// found potentials (the dual solution). |
|
372 /// |
|
373 /// Return a const reference to the node map storing the found |
|
374 /// potentials (the dual solution). |
|
375 /// |
|
376 /// \pre \ref run() must be called before using this function. |
|
377 const PotentialMap& potentialMap() const { |
|
378 return *_potential; |
|
379 } |
|
380 |
|
381 /// \brief Return the flow on the given edge. |
|
382 /// |
|
383 /// Return the flow on the given edge. |
|
384 /// |
|
385 /// \pre \ref run() must be called before using this function. |
|
386 Capacity flow(const Edge& edge) const { |
|
387 return (*_flow)[edge]; |
|
388 } |
|
389 |
|
390 /// \brief Return the potential of the given node. |
|
391 /// |
|
392 /// Return the potential of the given node. |
|
393 /// |
|
394 /// \pre \ref run() must be called before using this function. |
|
395 Cost potential(const Node& node) const { |
|
396 return (*_potential)[node]; |
|
397 } |
|
398 |
|
399 /// \brief Return the total cost of the found flow. |
|
400 /// |
|
401 /// Return the total cost of the found flow. The complexity of the |
|
402 /// function is \f$ O(e) \f$. |
|
403 /// |
|
404 /// \pre \ref run() must be called before using this function. |
|
405 Cost totalCost() const { |
|
406 Cost c = 0; |
|
407 for (EdgeIt e(_graph); e != INVALID; ++e) |
|
408 c += (*_flow)[e] * _cost[e]; |
|
409 return c; |
|
410 } |
|
411 |
|
412 /// @} |
|
413 |
|
414 private: |
|
415 |
|
416 /// Initialize the algorithm. |
|
417 bool init() { |
|
418 if (!_valid_supply) return false; |
|
419 |
|
420 // Initialize flow and potential maps |
|
421 if (!_flow) { |
|
422 _flow = new FlowMap(_graph); |
|
423 _local_flow = true; |
|
424 } |
|
425 if (!_potential) { |
|
426 _potential = new PotentialMap(_graph); |
|
427 _local_potential = true; |
|
428 } |
|
429 |
|
430 _res_graph = new ResGraph(_graph, _capacity, *_flow); |
|
431 |
|
432 // Find a feasible flow using Circulation |
|
433 Circulation< Graph, ConstMap<Edge, Capacity>, |
|
434 CapacityEdgeMap, SupplyMap > |
|
435 circulation( _graph, constMap<Edge>(Capacity(0)), |
|
436 _capacity, _supply ); |
|
437 return circulation.flowMap(*_flow).run(); |
|
438 } |
|
439 |
|
440 bool start() { |
|
441 const double LIMIT_FACTOR = 0.01; |
|
442 const int MIN_LIMIT = 3; |
|
443 |
|
444 typedef typename Graph::template NodeMap<double> FloatPotentialMap; |
|
445 typedef typename Graph::template NodeMap<int> LevelMap; |
|
446 typedef typename Graph::template NodeMap<bool> BoolNodeMap; |
|
447 typedef typename Graph::template NodeMap<Node> PredNodeMap; |
|
448 typedef typename Graph::template NodeMap<Edge> PredEdgeMap; |
|
449 typedef typename ResGraph::template EdgeMap<double> ResShiftCostMap; |
|
450 FloatPotentialMap pi(_graph); |
|
451 LevelMap level(_graph); |
|
452 BoolNodeMap reached(_graph); |
|
453 BoolNodeMap processed(_graph); |
|
454 PredNodeMap pred_node(_graph); |
|
455 PredEdgeMap pred_edge(_graph); |
|
456 int node_num = countNodes(_graph); |
|
457 typedef std::pair<Edge, bool> pair; |
|
458 std::vector<pair> stack(node_num); |
|
459 std::vector<Node> proc_vector(node_num); |
|
460 ResShiftCostMap shift_cost(*_res_graph); |
|
461 |
|
462 Tolerance<double> tol; |
|
463 tol.epsilon(1e-6); |
|
464 |
|
465 Timer t1, t2, t3; |
|
466 t1.reset(); |
|
467 t2.reset(); |
|
468 t3.reset(); |
|
469 |
|
470 // Initialize epsilon and the node potentials |
|
471 double epsilon = 0; |
|
472 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
473 if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon) |
|
474 epsilon = -_cost[e]; |
|
475 else if ((*_flow)[e] > 0 && _cost[e] > epsilon) |
|
476 epsilon = _cost[e]; |
|
477 } |
|
478 for (NodeIt v(_graph); v != INVALID; ++v) { |
|
479 pi[v] = 0; |
|
480 } |
|
481 |
|
482 // Start phases |
|
483 int limit = int(LIMIT_FACTOR * node_num); |
|
484 if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
|
485 int iter = limit; |
|
486 while (epsilon * node_num >= 1) { |
|
487 t1.start(); |
|
488 // Find and cancel cycles in the admissible graph using DFS |
|
489 for (NodeIt n(_graph); n != INVALID; ++n) { |
|
490 reached[n] = false; |
|
491 processed[n] = false; |
|
492 } |
|
493 int stack_head = -1; |
|
494 int proc_head = -1; |
|
495 |
|
496 for (NodeIt start(_graph); start != INVALID; ++start) { |
|
497 if (reached[start]) continue; |
|
498 |
|
499 // New start node |
|
500 reached[start] = true; |
|
501 pred_edge[start] = INVALID; |
|
502 pred_node[start] = INVALID; |
|
503 |
|
504 // Find the first admissible residual outgoing edge |
|
505 double p = pi[start]; |
|
506 Edge e; |
|
507 _graph.firstOut(e, start); |
|
508 while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
509 !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
510 _graph.nextOut(e); |
|
511 if (e != INVALID) { |
|
512 stack[++stack_head] = pair(e, true); |
|
513 goto next_step_1; |
|
514 } |
|
515 _graph.firstIn(e, start); |
|
516 while ( e != INVALID && ((*_flow)[e] == 0 || |
|
517 !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
518 _graph.nextIn(e); |
|
519 if (e != INVALID) { |
|
520 stack[++stack_head] = pair(e, false); |
|
521 goto next_step_1; |
|
522 } |
|
523 processed[start] = true; |
|
524 proc_vector[++proc_head] = start; |
|
525 continue; |
|
526 next_step_1: |
|
527 |
|
528 while (stack_head >= 0) { |
|
529 Edge se = stack[stack_head].first; |
|
530 bool sf = stack[stack_head].second; |
|
531 Node u, v; |
|
532 if (sf) { |
|
533 u = _graph.source(se); |
|
534 v = _graph.target(se); |
|
535 } else { |
|
536 u = _graph.target(se); |
|
537 v = _graph.source(se); |
|
538 } |
|
539 |
|
540 if (!reached[v]) { |
|
541 // A new node is reached |
|
542 reached[v] = true; |
|
543 pred_node[v] = u; |
|
544 pred_edge[v] = se; |
|
545 // Find the first admissible residual outgoing edge |
|
546 double p = pi[v]; |
|
547 Edge e; |
|
548 _graph.firstOut(e, v); |
|
549 while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
550 !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
551 _graph.nextOut(e); |
|
552 if (e != INVALID) { |
|
553 stack[++stack_head] = pair(e, true); |
|
554 goto next_step_2; |
|
555 } |
|
556 _graph.firstIn(e, v); |
|
557 while ( e != INVALID && ((*_flow)[e] == 0 || |
|
558 !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
559 _graph.nextIn(e); |
|
560 stack[++stack_head] = pair(e, false); |
|
561 next_step_2: ; |
|
562 } else { |
|
563 if (!processed[v]) { |
|
564 // A cycle is found |
|
565 Node n, w = u; |
|
566 Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] : |
|
567 (*_flow)[se]; |
|
568 for (n = u; n != v; n = pred_node[n]) { |
|
569 d = _graph.target(pred_edge[n]) == n ? |
|
570 _capacity[pred_edge[n]] - (*_flow)[pred_edge[n]] : |
|
571 (*_flow)[pred_edge[n]]; |
|
572 if (d <= delta) { |
|
573 delta = d; |
|
574 w = pred_node[n]; |
|
575 } |
|
576 } |
|
577 |
|
578 /* |
|
579 std::cout << "CYCLE FOUND: "; |
|
580 if (sf) |
|
581 std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]; |
|
582 else |
|
583 std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]); |
|
584 for (n = u; n != v; n = pred_node[n]) { |
|
585 if (_graph.target(pred_edge[n]) == n) |
|
586 std::cout << " " << _cost[pred_edge[n]] + pi[_graph.source(pred_edge[n])] - pi[_graph.target(pred_edge[n])]; |
|
587 else |
|
588 std::cout << " " << -(_cost[pred_edge[n]] + pi[_graph.source(pred_edge[n])] - pi[_graph.target(pred_edge[n])]); |
|
589 } |
|
590 std::cout << "\n"; |
|
591 */ |
|
592 // Augment along the cycle |
|
593 (*_flow)[se] = sf ? (*_flow)[se] + delta : |
|
594 (*_flow)[se] - delta; |
|
595 for (n = u; n != v; n = pred_node[n]) { |
|
596 if (_graph.target(pred_edge[n]) == n) |
|
597 (*_flow)[pred_edge[n]] += delta; |
|
598 else |
|
599 (*_flow)[pred_edge[n]] -= delta; |
|
600 } |
|
601 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { |
|
602 --stack_head; |
|
603 reached[n] = false; |
|
604 } |
|
605 u = w; |
|
606 } |
|
607 v = u; |
|
608 |
|
609 // Find the next admissible residual outgoing edge |
|
610 double p = pi[v]; |
|
611 Edge e = stack[stack_head].first; |
|
612 if (!stack[stack_head].second) { |
|
613 _graph.nextIn(e); |
|
614 goto in_edge_3; |
|
615 } |
|
616 _graph.nextOut(e); |
|
617 while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
618 !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
619 _graph.nextOut(e); |
|
620 if (e != INVALID) { |
|
621 stack[stack_head] = pair(e, true); |
|
622 goto next_step_3; |
|
623 } |
|
624 _graph.firstIn(e, v); |
|
625 in_edge_3: |
|
626 while ( e != INVALID && ((*_flow)[e] == 0 || |
|
627 !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
628 _graph.nextIn(e); |
|
629 stack[stack_head] = pair(e, false); |
|
630 next_step_3: ; |
|
631 } |
|
632 |
|
633 while (stack_head >= 0 && stack[stack_head].first == INVALID) { |
|
634 processed[v] = true; |
|
635 proc_vector[++proc_head] = v; |
|
636 if (--stack_head >= 0) { |
|
637 v = stack[stack_head].second ? |
|
638 _graph.source(stack[stack_head].first) : |
|
639 _graph.target(stack[stack_head].first); |
|
640 // Find the next admissible residual outgoing edge |
|
641 double p = pi[v]; |
|
642 Edge e = stack[stack_head].first; |
|
643 if (!stack[stack_head].second) { |
|
644 _graph.nextIn(e); |
|
645 goto in_edge_4; |
|
646 } |
|
647 _graph.nextOut(e); |
|
648 while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
649 !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
650 _graph.nextOut(e); |
|
651 if (e != INVALID) { |
|
652 stack[stack_head] = pair(e, true); |
|
653 goto next_step_4; |
|
654 } |
|
655 _graph.firstIn(e, v); |
|
656 in_edge_4: |
|
657 while ( e != INVALID && ((*_flow)[e] == 0 || |
|
658 !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
659 _graph.nextIn(e); |
|
660 stack[stack_head] = pair(e, false); |
|
661 next_step_4: ; |
|
662 } |
|
663 } |
|
664 } |
|
665 } |
|
666 t1.stop(); |
|
667 |
|
668 // Tighten potentials and epsilon |
|
669 if (--iter > 0) { |
|
670 // Compute levels |
|
671 t2.start(); |
|
672 for (int i = proc_head; i >= 0; --i) { |
|
673 Node v = proc_vector[i]; |
|
674 double p = pi[v]; |
|
675 int l = 0; |
|
676 for (InEdgeIt e(_graph, v); e != INVALID; ++e) { |
|
677 Node u = _graph.source(e); |
|
678 if ( _capacity[e] - (*_flow)[e] > 0 && |
|
679 tol.negative(_cost[e] + pi[u] - p) && |
|
680 level[u] + 1 > l ) l = level[u] + 1; |
|
681 } |
|
682 for (OutEdgeIt e(_graph, v); e != INVALID; ++e) { |
|
683 Node u = _graph.target(e); |
|
684 if ( (*_flow)[e] > 0 && |
|
685 tol.negative(-_cost[e] + pi[u] - p) && |
|
686 level[u] + 1 > l ) l = level[u] + 1; |
|
687 } |
|
688 level[v] = l; |
|
689 } |
|
690 |
|
691 // Modify potentials |
|
692 double p, q = -1; |
|
693 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
694 Node u = _graph.source(e); |
|
695 Node v = _graph.target(e); |
|
696 if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) { |
|
697 p = (_cost[e] + pi[u] - pi[v] + epsilon) / |
|
698 (level[u] - level[v] + 1); |
|
699 if (q < 0 || p < q) q = p; |
|
700 } |
|
701 else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) { |
|
702 p = (-_cost[e] - pi[u] + pi[v] + epsilon) / |
|
703 (level[v] - level[u] + 1); |
|
704 if (q < 0 || p < q) q = p; |
|
705 } |
|
706 } |
|
707 for (NodeIt v(_graph); v != INVALID; ++v) { |
|
708 pi[v] -= q * level[v]; |
|
709 } |
|
710 |
|
711 // Modify epsilon |
|
712 epsilon = 0; |
|
713 for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
714 double curr = _cost[e] + pi[_graph.source(e)] |
|
715 - pi[_graph.target(e)]; |
|
716 if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon) |
|
717 epsilon = -curr; |
|
718 else if ((*_flow)[e] > 0 && curr > epsilon) |
|
719 epsilon = curr; |
|
720 } |
|
721 t2.stop(); |
|
722 } else { |
|
723 // Set epsilon to the minimum cycle mean |
|
724 t3.start(); |
|
725 |
|
726 /**/ |
|
727 StaticGraph static_graph; |
|
728 typename ResGraph::template NodeMap<typename StaticGraph::Node> node_ref(*_res_graph); |
|
729 typename ResGraph::template EdgeMap<typename StaticGraph::Edge> edge_ref(*_res_graph); |
|
730 static_graph.build(*_res_graph, node_ref, edge_ref); |
|
731 typename StaticGraph::template NodeMap<double> static_pi(static_graph); |
|
732 typename StaticGraph::template EdgeMap<double> static_cost(static_graph); |
|
733 |
|
734 for (typename ResGraph::EdgeIt e(*_res_graph); e != INVALID; ++e) |
|
735 static_cost[edge_ref[e]] = _res_cost[e]; |
|
736 |
|
737 MinMeanCycle<StaticGraph, typename StaticGraph::template EdgeMap<double> > |
|
738 mmc(static_graph, static_cost); |
|
739 mmc.init(); |
|
740 mmc.findMinMean(); |
|
741 epsilon = -mmc.cycleMean(); |
|
742 /**/ |
|
743 |
|
744 /* |
|
745 MinMeanCycle<ResGraph, ResidualCostMap> mmc(*_res_graph, _res_cost); |
|
746 mmc.init(); |
|
747 mmc.findMinMean(); |
|
748 epsilon = -mmc.cycleMean(); |
|
749 */ |
|
750 |
|
751 // Compute feasible potentials for the current epsilon |
|
752 for (typename StaticGraph::EdgeIt e(static_graph); e != INVALID; ++e) |
|
753 static_cost[e] += epsilon; |
|
754 typename BellmanFord<StaticGraph, typename StaticGraph::template EdgeMap<double> >:: |
|
755 template DefDistMap<typename StaticGraph::template NodeMap<double> >:: |
|
756 template DefOperationTraits<BFOperationTraits>::Create |
|
757 bf(static_graph, static_cost); |
|
758 bf.distMap(static_pi).init(0); |
|
759 bf.start(); |
|
760 for (NodeIt n(_graph); n != INVALID; ++n) |
|
761 pi[n] = static_pi[node_ref[n]]; |
|
762 |
|
763 /* |
|
764 for (typename ResGraph::EdgeIt e(*_res_graph); e != INVALID; ++e) |
|
765 shift_cost[e] = _res_cost[e] + epsilon; |
|
766 typename BellmanFord<ResGraph, ResShiftCostMap>:: |
|
767 template DefDistMap<FloatPotentialMap>:: |
|
768 template DefOperationTraits<BFOperationTraits>::Create |
|
769 bf(*_res_graph, shift_cost); |
|
770 bf.distMap(pi).init(0); |
|
771 bf.start(); |
|
772 */ |
|
773 |
|
774 iter = limit; |
|
775 t3.stop(); |
|
776 } |
|
777 } |
|
778 |
|
779 // std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n"; |
|
780 |
|
781 // Handle non-zero lower bounds |
|
782 if (_lower) { |
|
783 for (EdgeIt e(_graph); e != INVALID; ++e) |
|
784 (*_flow)[e] += (*_lower)[e]; |
|
785 } |
|
786 return true; |
|
787 } |
|
788 |
|
789 }; //class CancelAndTighten |
|
790 |
|
791 ///@} |
|
792 |
|
793 } //namespace lemon |
|
794 |
|
795 #endif //LEMON_CANCEL_AND_TIGHTEN_H |