src/work/jacint/max_matching.h
changeset 1365 c280de819a73
parent 921 818510fa3d99
equal deleted inserted replaced
5:55540210faa5 -1:000000000000
     1 // -*- C++ -*-
       
     2 #ifndef LEMON_MAX_MATCHING_H
       
     3 #define LEMON_MAX_MATCHING_H
       
     4 
       
     5 ///\ingroup galgs
       
     6 ///\file
       
     7 ///\brief Maximum matching algorithm.
       
     8 
       
     9 #include <queue>
       
    10 
       
    11 #include <invalid.h>
       
    12 #include <unionfind.h>
       
    13 
       
    14 namespace lemon {
       
    15 
       
    16   /// \addtogroup galgs
       
    17   /// @{
       
    18 
       
    19   ///Maximum matching algorithms class.
       
    20 
       
    21   ///This class provides Edmonds' alternating forest matching
       
    22   ///algorithm. The starting matching (if any) can be passed to the
       
    23   ///algorithm using read-in functions \ref readNMapNode, \ref
       
    24   ///readNMapEdge or \ref readEMapBool depending on the container. The
       
    25   ///resulting maximum matching can be attained by write-out functions
       
    26   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
       
    27   ///depending on the preferred container. 
       
    28   ///
       
    29   ///The dual side of a mathcing is a map of the nodes to
       
    30   ///MaxMatching::pos_enum, having values D, A and C showing the
       
    31   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
       
    32   ///a graph with factor-critical components, the nodes in A form the
       
    33   ///barrier, and the nodes in C induce a graph having a perfect
       
    34   ///matching. This decomposition can be attained by calling \ref
       
    35   ///writePos after running the algorithm. Before subsequent runs,
       
    36   ///the function \ref resetPos() must be called.
       
    37   ///
       
    38   ///\param Graph The undirected graph type the algorithm runs on.
       
    39   ///
       
    40   ///\author Jacint Szabo  
       
    41   template <typename Graph>
       
    42   class MaxMatching {
       
    43     typedef typename Graph::Node Node;
       
    44     typedef typename Graph::Edge Edge;
       
    45     typedef typename Graph::EdgeIt EdgeIt;
       
    46     typedef typename Graph::NodeIt NodeIt;
       
    47     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    48 
       
    49     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
       
    50 
       
    51   public:
       
    52     
       
    53     ///Indicates the Gallai-Edmonds decomposition of the graph.
       
    54 
       
    55     ///Indicates the Gallai-Edmonds decomposition of the graph, which
       
    56     ///shows an upper bound on the size of a maximum matching. The
       
    57     ///nodes with pos_enum \c D induce a graph with factor-critical
       
    58     ///components, the nodes in \c A form the canonical barrier, and the
       
    59     ///nodes in \c C induce a graph having a perfect matching. 
       
    60     enum pos_enum {
       
    61       D=0,
       
    62       A=1,
       
    63       C=2
       
    64     }; 
       
    65 
       
    66   private:
       
    67 
       
    68     const Graph& G;
       
    69     typename Graph::template NodeMap<Node> mate;
       
    70     typename Graph::template NodeMap<pos_enum> position;
       
    71      
       
    72   public:
       
    73     
       
    74     MaxMatching(const Graph& _G) : G(_G), mate(_G,INVALID), position(_G,C) {}
       
    75 
       
    76     ///Runs Edmonds' algorithm.
       
    77 
       
    78     ///Runs Edmonds' algorithm for sparse graphs (edgeNum >=
       
    79     ///2*nodeNum), and a heuristical Edmonds' algorithm with a
       
    80     ///heuristic of postponing shrinks for dense graphs. \pre Before
       
    81     ///the subsequent calls \ref resetPos must be called.
       
    82     inline void run();
       
    83 
       
    84     ///Runs Edmonds' algorithm.
       
    85     
       
    86     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
       
    87     ///Edmonds' algorithm with a heuristic of postponing shrinks,
       
    88     ///giving a faster algorithm for dense graphs.  \pre Before the
       
    89     ///subsequent calls \ref resetPos must be called.
       
    90     void runEdmonds( int heur );
       
    91 
       
    92     ///Finds a greedy matching starting from the actual matching.
       
    93     
       
    94     ///Starting form the actual matching stored, it finds a maximal
       
    95     ///greedy matching.
       
    96     void greedyMatching();
       
    97 
       
    98     ///Returns the size of the actual matching stored.
       
    99 
       
   100     ///Returns the size of the actual matching stored. After \ref
       
   101     ///run() it returns the size of a maximum matching in the graph.
       
   102     int size () const;
       
   103 
       
   104     ///Resets the map storing the Gallai-Edmonds decomposition.
       
   105     
       
   106     ///Resets the map storing the Gallai-Edmonds decomposition of the
       
   107     ///graph, making it possible to run the algorithm. Must be called
       
   108     ///before all runs of the Edmonds algorithm, except for the first
       
   109     ///run.
       
   110     void resetPos();
       
   111 
       
   112     ///Resets the actual matching to the empty matching.
       
   113 
       
   114     ///Resets the actual matching to the empty matching.  
       
   115     ///
       
   116     void resetMatching();
       
   117 
       
   118     ///Reads a matching from a \c Node map of \c Nodes.
       
   119 
       
   120     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
       
   121     ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
       
   122     ///now \c uv is an edge of the matching.
       
   123     template<typename NMapN>
       
   124     void readNMapNode(NMapN& map) {
       
   125       NodeIt v;
       
   126       for( G.first(v); G.valid(v); G.next(v)) {
       
   127 	mate.set(v,map[v]);   
       
   128       } 
       
   129     } 
       
   130     
       
   131     ///Writes the stored matching to a \c Node map of \c Nodes.
       
   132 
       
   133     ///Writes the stored matching to a \c Node map of \c Nodes. The
       
   134     ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
       
   135     ///map[v]=u will hold, and now \c uv is an edge of the matching.
       
   136     template<typename NMapN>
       
   137     void writeNMapNode (NMapN& map) const {
       
   138       NodeIt v;
       
   139       for( G.first(v); G.valid(v); G.next(v)) {
       
   140 	map.set(v,mate[v]);   
       
   141       } 
       
   142     } 
       
   143 
       
   144     ///Reads a matching from a \c Node map of \c Edges.
       
   145 
       
   146     ///Reads a matching from a \c Node map of incident \c Edges. This
       
   147     ///map must have the property that if \c G.bNode(map[u])=v then \c
       
   148     ///G.bNode(map[v])=u must hold, and now this edge is an edge of
       
   149     ///the matching.
       
   150     template<typename NMapE>
       
   151     void readNMapEdge(NMapE& map) {
       
   152       NodeIt v;
       
   153       for( G.first(v); G.valid(v); G.next(v)) {
       
   154 	Edge e=map[v];
       
   155 	if ( G.valid(e) )
       
   156 	  G.source(e) == v ? mate.set(v,G.target(e)) : mate.set(v,G.source(e)); 
       
   157       } 
       
   158     } 
       
   159     
       
   160     ///Writes the matching stored to a \c Node map of \c Edges.
       
   161 
       
   162     ///Writes the stored matching to a \c Node map of incident \c
       
   163     ///Edges. This map will have the property that if \c
       
   164     ///G.bNode(map[u])=v then \c G.bNode(map[v])=u holds, and now this
       
   165     ///edge is an edge of the matching.
       
   166     template<typename NMapE>
       
   167     void writeNMapEdge (NMapE& map)  const {
       
   168       typename Graph::template NodeMap<bool> todo(G,false); 
       
   169       NodeIt v;
       
   170       for( G.first(v); G.valid(v); G.next(v)) {
       
   171 	if ( mate[v]!=INVALID ) todo.set(v,true); 
       
   172       }
       
   173       NodeIt e;
       
   174       for( G.first(e); G.valid(e); G.next(e)) {
       
   175 	if ( todo[G.target(e)] && todo[G.source(e)] ) {
       
   176 	  Node u=G.source(e);
       
   177 	  Node v=G.target(e); 
       
   178 	  if ( mate[u]=v && mate[v]=u ) {
       
   179 	    map.set(u,e);
       
   180 	    map.set(v,e);
       
   181 	    todo.set(u,false);
       
   182 	    todo.set(v,false);
       
   183 	  }
       
   184 	}
       
   185       }
       
   186     } 
       
   187 
       
   188     ///Reads a matching from an \c Edge map of \c bools.
       
   189     
       
   190     ///Reads a matching from an \c Edge map of \c bools. This map must
       
   191     ///have the property that there are no two adjacent edges \c e, \c
       
   192     ///f with \c map[e]=map[f]=true. The edges \c e with \c
       
   193     ///map[e]=true form the matching.
       
   194     template<typename EMapB>
       
   195     void readEMapBool(EMapB& map) {
       
   196       EdgeIt e;
       
   197       for( G.first(e); G.valid(e); G.next(e)) {
       
   198 	if ( G.valid(e) ) {
       
   199 	  Node u=G.source(e);	  
       
   200 	  Node v=G.target(e);
       
   201 	  mate.set(u,v);
       
   202 	  mate.set(v,u);
       
   203 	} 
       
   204       } 
       
   205     }
       
   206 
       
   207 
       
   208     ///Writes the matching stored to an \c Edge map of \c bools.
       
   209 
       
   210     ///Writes the matching stored to an \c Edge map of \c bools. This
       
   211     ///map will have the property that there are no two adjacent edges
       
   212     ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
       
   213     ///map[e]=true form the matching.
       
   214     template<typename EMapB>
       
   215     void writeEMapBool (EMapB& map) const {
       
   216       typename Graph::template NodeMap<bool> todo(G,false); 
       
   217       NodeIt v;
       
   218       for( G.first(v); G.valid(v); G.next(v)) {
       
   219 	if ( mate[v]!=INVALID ) todo.set(v,true); 
       
   220       }
       
   221       
       
   222       NodeIt e;
       
   223       for( G.first(e); G.valid(e); G.next(e)) {
       
   224 	map.set(e,false);
       
   225 	if ( todo[G.target(e)] && todo[G.source(e)] ) {
       
   226 	  Node u=G.source(e);
       
   227 	  Node v=G.target(e); 
       
   228 	  if ( mate[u]=v && mate[v]=u ) {
       
   229 	    map.set(e,true);
       
   230 	    todo.set(u,false);
       
   231 	    todo.set(v,false);
       
   232 	  }
       
   233 	}
       
   234       }
       
   235     }
       
   236 
       
   237     ///Writes the canonical decomposition of the graph after running
       
   238     ///the algorithm.
       
   239 
       
   240     ///After calling any run methods of the class, and before calling
       
   241     ///\ref resetPos(), it writes the Gallai-Edmonds canonical
       
   242     ///decomposition of the graph. \c map must be a node map
       
   243     ///of \ref pos_enum 's.
       
   244     template<typename NMapEnum>
       
   245     void writePos (NMapEnum& map) const {
       
   246       NodeIt v;
       
   247       for( G.first(v); G.valid(v); G.next(v)) map.set(v,position[v]);
       
   248     }
       
   249 
       
   250   private: 
       
   251 
       
   252     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
       
   253 		    UFE& blossom, UFE& tree);
       
   254 
       
   255     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
       
   256 		    UFE& blossom, UFE& tree);
       
   257 
       
   258     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
       
   259 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
       
   260 
       
   261     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
       
   262 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
       
   263 
       
   264     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
       
   265 		 UFE& blossom, UFE& tree);
       
   266 
       
   267   };
       
   268 
       
   269 
       
   270   // **********************************************************************
       
   271   //  IMPLEMENTATIONS
       
   272   // **********************************************************************
       
   273 
       
   274 
       
   275   template <typename Graph>
       
   276   void MaxMatching<Graph>::run() {
       
   277     if ( G.edgeNum() > 2*G.nodeNum() ) {
       
   278       greedyMatching();
       
   279       runEdmonds(1);
       
   280     } else runEdmonds(0);
       
   281   }
       
   282 
       
   283   template <typename Graph>
       
   284   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
       
   285       
       
   286     typename Graph::template NodeMap<Node> ear(G,INVALID); 
       
   287     //undefined for the base nodes of the blossoms (i.e. for the
       
   288     //representative elements of UFE blossom) and for the nodes in C
       
   289       
       
   290     typename UFE::MapType blossom_base(G);
       
   291     UFE blossom(blossom_base);
       
   292     typename UFE::MapType tree_base(G);
       
   293     UFE tree(tree_base);
       
   294 	
       
   295     NodeIt v;
       
   296     for( G.first(v); G.valid(v); G.next(v) ) {
       
   297       if ( position[v]==C && mate[v]==INVALID ) {
       
   298 	blossom.insert(v);
       
   299 	tree.insert(v); 
       
   300 	position.set(v,D);
       
   301 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
       
   302 	else normShrink( v, ear, blossom, tree );
       
   303       }
       
   304     }
       
   305   }
       
   306     
       
   307   template <typename Graph>
       
   308   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
       
   309 				      UFE& blossom, UFE& tree) {
       
   310      
       
   311     std::queue<Node> Q;   //queue of the totally unscanned nodes
       
   312     Q.push(v);  
       
   313     std::queue<Node> R;   
       
   314     //queue of the nodes which must be scanned for a possible shrink
       
   315       
       
   316     while ( !Q.empty() ) {
       
   317       Node x=Q.front();
       
   318       Q.pop();
       
   319       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
       
   320       else R.push(x);
       
   321     }
       
   322       
       
   323     while ( !R.empty() ) {
       
   324       Node x=R.front();
       
   325       R.pop();
       
   326 	
       
   327       OutEdgeIt e;
       
   328       for( G.first(e,x); G.valid(e); G.next(e) ) {
       
   329 	Node y=G.bNode(e);
       
   330 
       
   331 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
       
   332 	  //x and y must be in the same tree
       
   333 	
       
   334 	  typename Graph::template NodeMap<bool> path(G,false);
       
   335 
       
   336 	  Node b=blossom.find(x);
       
   337 	  path.set(b,true);
       
   338 	  b=mate[b];
       
   339 	  while ( b!=INVALID ) { 
       
   340 	    b=blossom.find(ear[b]);
       
   341 	    path.set(b,true);
       
   342 	    b=mate[b];
       
   343 	  } //going till the root
       
   344 	
       
   345 	  Node top=y;
       
   346 	  Node middle=blossom.find(top);
       
   347 	  Node bottom=x;
       
   348 	  while ( !path[middle] )
       
   349 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   350 		  
       
   351 	  Node base=middle;
       
   352 	  top=x;
       
   353 	  middle=blossom.find(top);
       
   354 	  bottom=y;
       
   355 	  Node blossom_base=blossom.find(base);
       
   356 	  while ( middle!=blossom_base )
       
   357 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   358 		  
       
   359 	  blossom.makeRep(base);
       
   360 	} // if shrink is needed
       
   361 
       
   362 	while ( !Q.empty() ) {
       
   363 	  Node x=Q.front();
       
   364 	  Q.pop();
       
   365 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
       
   366 	  else R.push(x);
       
   367 	}
       
   368       } //for e
       
   369     } // while ( !R.empty() )
       
   370   }
       
   371 
       
   372   template <typename Graph>
       
   373   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
       
   374 				      UFE& blossom, UFE& tree) {
       
   375 
       
   376     std::queue<Node> Q;   //queue of the unscanned nodes
       
   377     Q.push(v);  
       
   378     while ( !Q.empty() ) {
       
   379       Node x=Q.front();
       
   380       Q.pop();
       
   381 	
       
   382       OutEdgeIt e;
       
   383       for( G.first(e,x); G.valid(e); G.next(e) ) {
       
   384 	Node y=G.bNode(e);
       
   385 	      
       
   386 	switch ( position[y] ) {
       
   387 	case D:          //x and y must be in the same tree
       
   388 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
       
   389 	    typename Graph::template NodeMap<bool> path(G,false);
       
   390 	      
       
   391 	    Node b=blossom.find(x);
       
   392 	    path.set(b,true);
       
   393 	    b=mate[b];
       
   394 	    while ( b!=INVALID ) { 
       
   395 	      b=blossom.find(ear[b]);
       
   396 	      path.set(b,true);
       
   397 	      b=mate[b];
       
   398 	    } //going till the root
       
   399 	
       
   400 	    Node top=y;
       
   401 	    Node middle=blossom.find(top);
       
   402 	    Node bottom=x;
       
   403 	    while ( !path[middle] )
       
   404 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   405 		
       
   406 	    Node base=middle;
       
   407 	    top=x;
       
   408 	    middle=blossom.find(top);
       
   409 	    bottom=y;
       
   410 	    Node blossom_base=blossom.find(base);
       
   411 	    while ( middle!=blossom_base )
       
   412 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
       
   413 		
       
   414 	    blossom.makeRep(base);
       
   415 	  }
       
   416 	  break;
       
   417 	case C:
       
   418 	  if ( mate[y]!=INVALID ) {   //grow
       
   419 	    ear.set(y,x);
       
   420 	    Node w=mate[y];
       
   421 	    blossom.insert(w);
       
   422 	    position.set(y,A); 
       
   423 	    position.set(w,D); 
       
   424 	    tree.insert(y);
       
   425 	    tree.insert(w);
       
   426 	    tree.join(y,blossom.find(x));  
       
   427 	    tree.join(w,y);  
       
   428 	    Q.push(w);
       
   429 	  } else {                 //augment  
       
   430 	    augment(x, ear, blossom, tree);
       
   431 	    mate.set(x,y);
       
   432 	    mate.set(y,x);
       
   433 	    return;
       
   434 	  } //if 
       
   435 	  break;
       
   436 	default: break;
       
   437 	}
       
   438       }
       
   439     }
       
   440   }
       
   441 
       
   442   template <typename Graph>
       
   443   void MaxMatching<Graph>::greedyMatching() {
       
   444     NodeIt v;
       
   445     for( G.first(v); G.valid(v); G.next(v) )
       
   446       if ( mate[v]==INVALID ) {
       
   447 	OutEdgeIt e;
       
   448 	for( G.first(e,v); G.valid(e); G.next(e) ) {
       
   449 	  Node y=G.bNode(e);
       
   450 	  if ( mate[y]==INVALID && y!=v ) {
       
   451 	    mate.set(v,y);
       
   452 	    mate.set(y,v);
       
   453 	    break;
       
   454 	  }
       
   455 	}
       
   456       } 
       
   457   }
       
   458    
       
   459   template <typename Graph>
       
   460   int MaxMatching<Graph>::size() const {
       
   461     int s=0;
       
   462     NodeIt v;
       
   463     for(G.first(v); G.valid(v); G.next(v) ) {
       
   464       if ( G.valid(mate[v]) ) {
       
   465 	++s;
       
   466       }
       
   467     }
       
   468     return (int)s/2;
       
   469   }
       
   470 
       
   471   template <typename Graph>
       
   472   void MaxMatching<Graph>::resetPos() {
       
   473     NodeIt v;
       
   474     for( G.first(v); G.valid(v); G.next(v))
       
   475       position.set(v,C);      
       
   476   }
       
   477 
       
   478   template <typename Graph>
       
   479   void MaxMatching<Graph>::resetMatching() {
       
   480     NodeIt v;
       
   481     for( G.first(v); G.valid(v); G.next(v))
       
   482       mate.set(v,INVALID);      
       
   483   }
       
   484 
       
   485   template <typename Graph>
       
   486   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
       
   487 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
       
   488     OutEdgeIt e;
       
   489     for( G.first(e,x); G.valid(e); G.next(e) ) {
       
   490       Node y=G.bNode(e);
       
   491 	
       
   492       if ( position[y]==C ) {
       
   493 	if ( mate[y]!=INVALID ) {       //grow
       
   494 	  ear.set(y,x);
       
   495 	  Node w=mate[y];
       
   496 	  blossom.insert(w);
       
   497 	  position.set(y,A);
       
   498 	  position.set(w,D);
       
   499 	  tree.insert(y);
       
   500 	  tree.insert(w);
       
   501 	  tree.join(y,blossom.find(x));  
       
   502 	  tree.join(w,y);  
       
   503 	  Q.push(w);
       
   504 	} else {                      //augment 
       
   505 	  augment(x, ear, blossom, tree);
       
   506 	  mate.set(x,y);
       
   507 	  mate.set(y,x);
       
   508 	  return true;
       
   509 	}
       
   510       }
       
   511     }
       
   512     return false;
       
   513   }
       
   514 
       
   515   template <typename Graph>
       
   516   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
       
   517 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
       
   518     ear.set(top,bottom);
       
   519     Node t=top;
       
   520     while ( t!=middle ) {
       
   521       Node u=mate[t];
       
   522       t=ear[u];
       
   523       ear.set(t,u);
       
   524     } 
       
   525     bottom=mate[middle];
       
   526     position.set(bottom,D);
       
   527     Q.push(bottom);
       
   528     top=ear[bottom];		
       
   529     Node oldmiddle=middle;
       
   530     middle=blossom.find(top);
       
   531     tree.erase(bottom);
       
   532     tree.erase(oldmiddle);
       
   533     blossom.insert(bottom);
       
   534     blossom.join(bottom, oldmiddle);
       
   535     blossom.join(top, oldmiddle);
       
   536   }
       
   537 
       
   538   template <typename Graph>
       
   539   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
       
   540 				   UFE& blossom, UFE& tree) { 
       
   541     Node v=mate[x];
       
   542     while ( G.valid(v) ) {
       
   543 	
       
   544       Node u=ear[v];
       
   545       mate.set(v,u);
       
   546       Node tmp=v;
       
   547       v=mate[u];
       
   548       mate.set(u,tmp);
       
   549     }
       
   550     typename UFE::ItemIt it;
       
   551     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
       
   552       if ( position[it] == D ) {
       
   553 	typename UFE::ItemIt b_it;
       
   554 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
       
   555 	  position.set( b_it ,C);
       
   556 	}
       
   557 	blossom.eraseClass(it);
       
   558       } else position.set( it ,C);
       
   559     }
       
   560     tree.eraseClass(x);
       
   561   }
       
   562 
       
   563 
       
   564 
       
   565   /// @}
       
   566   
       
   567 } //END OF NAMESPACE LEMON
       
   568 
       
   569 #endif //EDMONDS_H