src/work/jacint/preflow_res.h
changeset 1365 c280de819a73
parent 921 818510fa3d99
equal deleted inserted replaced
5:ad9d075239c2 -1:000000000000
     1 // -*- C++ -*-
       
     2 //The same as preflow.h, using ResGraphWrapper
       
     3 #ifndef LEMON_PREFLOW_RES_H
       
     4 #define LEMON_PREFLOW_RES_H
       
     5 
       
     6 #define H0 20
       
     7 #define H1 1
       
     8 
       
     9 #include <vector>
       
    10 #include <queue>
       
    11 #include <graph_wrapper.h>
       
    12 
       
    13 #include<iostream>
       
    14 
       
    15 namespace lemon {
       
    16 
       
    17   template <typename Graph, typename T, 
       
    18 	    typename CapMap=typename Graph::template EdgeMap<T>, 
       
    19             typename FlowMap=typename Graph::template EdgeMap<T> >
       
    20   class PreflowRes {
       
    21     
       
    22     typedef typename Graph::Node Node;
       
    23     typedef typename Graph::Edge Edge;
       
    24     typedef typename Graph::NodeIt NodeIt;
       
    25     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    26     typedef typename Graph::InEdgeIt InEdgeIt;
       
    27     
       
    28     const Graph& G;
       
    29     Node s;
       
    30     Node t;
       
    31     const CapMap& capacity;  
       
    32     FlowMap& flow;
       
    33     T value;
       
    34     bool constzero;
       
    35 
       
    36     typedef ResGraphWrapper<const Graph, T, CapMap, FlowMap> ResGW;
       
    37     typedef typename ResGW::OutEdgeIt ResOutEdgeIt;
       
    38     typedef typename ResGW::InEdgeIt ResInEdgeIt;
       
    39     typedef typename ResGW::Edge ResEdge;
       
    40  
       
    41   public:
       
    42     PreflowRes(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
       
    43 	    FlowMap& _flow, bool _constzero ) :
       
    44       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero) {}
       
    45     
       
    46     
       
    47     void run() {
       
    48 
       
    49       ResGW res_graph(G, capacity, flow);
       
    50 
       
    51       value=0;                //for the subsequent runs
       
    52 
       
    53       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
       
    54       int n=G.nodeNum(); 
       
    55       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
       
    56       int heur1=(int)(H1*n);  //time while running 'highest label'
       
    57       int heur=heur1;         //starting time interval (#of relabels)
       
    58       bool what_heur=1;       
       
    59       /*
       
    60 	what_heur is 0 in case 'bound decrease' 
       
    61 	and 1 in case 'highest label'
       
    62       */
       
    63       bool end=false;     
       
    64       /*
       
    65 	Needed for 'bound decrease', 'true'
       
    66 	means no active nodes are above bound b.
       
    67       */
       
    68       int relabel=0;
       
    69       int k=n-2;  //bound on the highest level under n containing a node
       
    70       int b=k;    //bound on the highest level under n of an active node
       
    71       
       
    72       typename Graph::template NodeMap<int> level(G,n);      
       
    73       typename Graph::template NodeMap<T> excess(G); 
       
    74 
       
    75       std::vector<Node> active(n-1,INVALID);
       
    76       typename Graph::template NodeMap<Node> next(G,INVALID);
       
    77       //Stack of the active nodes in level i < n.
       
    78       //We use it in both phases.
       
    79 
       
    80       typename Graph::template NodeMap<Node> left(G,INVALID);
       
    81       typename Graph::template NodeMap<Node> right(G,INVALID);
       
    82       std::vector<Node> level_list(n,INVALID);
       
    83       /*
       
    84 	List of the nodes in level i<n.
       
    85       */
       
    86 
       
    87 
       
    88       /*
       
    89 	Reverse_bfs from t in the residual graph, 
       
    90 	to find the starting level.
       
    91       */
       
    92       level.set(t,0);
       
    93       std::queue<Node> bfs_queue;
       
    94       bfs_queue.push(t);
       
    95       
       
    96       while (!bfs_queue.empty()) {
       
    97 	
       
    98 	Node v=bfs_queue.front();	
       
    99 	bfs_queue.pop();
       
   100 	int l=level[v]+1;
       
   101 	
       
   102 	ResInEdgeIt e;
       
   103 	for(res_graph.first(e,v); res_graph.valid(e); 
       
   104 	    res_graph.next(e)) {
       
   105 	  Node w=res_graph.source(e);
       
   106 	  if ( level[w] == n && w != s ) {
       
   107 	    bfs_queue.push(w);
       
   108 	    Node first=level_list[l];
       
   109 	    if ( G.valid(first) ) left.set(first,w);
       
   110 	    right.set(w,first);
       
   111 	    level_list[l]=w;
       
   112 	    level.set(w, l);
       
   113 	  }
       
   114 	}
       
   115       }
       
   116       
       
   117 	
       
   118       if ( !constzero ) {
       
   119 	/*
       
   120 	  Counting the excess
       
   121 	*/
       
   122 	NodeIt v;
       
   123 	for(G.first(v); G.valid(v); G.next(v)) {
       
   124 	  T exc=0;
       
   125 
       
   126 	  InEdgeIt e;
       
   127 	  for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
       
   128 	  OutEdgeIt f;
       
   129 	  for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f];
       
   130 
       
   131 	  excess.set(v,exc);	  
       
   132 
       
   133 	  //putting the active nodes into the stack
       
   134 	  int lev=level[v];
       
   135 	  if ( exc > 0 && lev < n ) {
       
   136 	    next.set(v,active[lev]);
       
   137 	    active[lev]=v;
       
   138 	  }
       
   139 	}
       
   140       }
       
   141      
       
   142 
       
   143 
       
   144       //the starting flow
       
   145       ResOutEdgeIt e;
       
   146       for(res_graph.first(e,s); res_graph.valid(e); 
       
   147 	  res_graph.next(e)) {
       
   148 	  Node w=res_graph.target(e);
       
   149 	  if ( level[w] < n ) {	  
       
   150 	    if ( excess[w] == 0 && w!=t ) {
       
   151 	      next.set(w,active[level[w]]);
       
   152 	      active[level[w]]=w;
       
   153 	    }
       
   154 	    T rem=res_graph.resCap(e);
       
   155 	    excess.set(w, excess[w]+rem);
       
   156 	    res_graph.augment(e, rem ); 
       
   157 	  }
       
   158       }
       
   159 	
       
   160 
       
   161       /* 
       
   162 	 End of preprocessing 
       
   163       */
       
   164 
       
   165 
       
   166 
       
   167       /*
       
   168 	Push/relabel on the highest level active nodes.
       
   169       */	
       
   170       while ( true ) {
       
   171 	
       
   172 	if ( b == 0 ) {
       
   173 	  if ( phase ) break;
       
   174 	  
       
   175 	  if ( !what_heur && !end && k > 0 ) {
       
   176 	    b=k;
       
   177 	    end=true;
       
   178 	  } else {
       
   179 	    phase=1;
       
   180 	    level.set(s,0);
       
   181 	    std::queue<Node> bfs_queue;
       
   182 	    bfs_queue.push(s);
       
   183 	    
       
   184 	    while (!bfs_queue.empty()) {
       
   185 	      
       
   186 	      Node v=bfs_queue.front();	
       
   187 	      bfs_queue.pop();
       
   188 	      int l=level[v]+1;
       
   189 	      
       
   190 	      ResInEdgeIt e;
       
   191 	      for(res_graph.first(e,v); 
       
   192 		  res_graph.valid(e); res_graph.next(e)) {
       
   193 		Node u=res_graph.source(e);
       
   194 		if ( level[u] >= n ) { 
       
   195 		  bfs_queue.push(u);
       
   196 		  level.set(u, l);
       
   197 		  if ( excess[u] > 0 ) {
       
   198 		    next.set(u,active[l]);
       
   199 		    active[l]=u;
       
   200 		  }
       
   201 		}
       
   202 	      }
       
   203 	    
       
   204 	    }
       
   205 	    b=n-2;
       
   206 	  }
       
   207 	    
       
   208 	}
       
   209 	  
       
   210 	  
       
   211 	if ( !G.valid(active[b]) ) --b; 
       
   212 	else {
       
   213 	  end=false;  
       
   214 
       
   215 	  Node w=active[b];
       
   216 	  active[b]=next[w];
       
   217 	  int lev=level[w];
       
   218 	  T exc=excess[w];
       
   219 	  int newlevel=n;       //bound on the next level of w
       
   220 	  
       
   221 	  ResOutEdgeIt e;
       
   222 	  for(res_graph.first(e,w); res_graph.valid(e); res_graph.next(e)) {
       
   223 	    
       
   224 	    Node v=res_graph.target(e);            
       
   225 	    if( lev > level[v] ) {      
       
   226 	      /*Push is allowed now*/
       
   227 	      
       
   228 	      if ( excess[v]==0 && v!=t && v!=s ) {
       
   229 		int lev_v=level[v];
       
   230 		next.set(v,active[lev_v]);
       
   231 		active[lev_v]=v;
       
   232 	      }
       
   233 	      
       
   234 	      T remcap=res_graph.resCap(e);
       
   235 	      
       
   236 	      if ( remcap >= exc ) {       
       
   237 		/*A nonsaturating push.*/
       
   238 		res_graph.augment(e, exc);
       
   239 		excess.set(v, excess[v]+exc);
       
   240 		exc=0;
       
   241 		break; 
       
   242 		
       
   243 	      } else { 
       
   244 		/*A saturating push.*/
       
   245 		
       
   246 		res_graph.augment(e, remcap);
       
   247 		excess.set(v, excess[v]+remcap);
       
   248 		exc-=remcap;
       
   249 	      }
       
   250 	    } else if ( newlevel > level[v] ){
       
   251 	      newlevel = level[v];
       
   252 	    }	    
       
   253 	    
       
   254 	  }
       
   255 
       
   256 	excess.set(w, exc);
       
   257 	 
       
   258 	/*
       
   259 	  Relabel
       
   260 	*/
       
   261 	
       
   262 
       
   263 	if ( exc > 0 ) {
       
   264 	  //now 'lev' is the old level of w
       
   265 	
       
   266 	  if ( phase ) {
       
   267 	    level.set(w,++newlevel);
       
   268 	    next.set(w,active[newlevel]);
       
   269 	    active[newlevel]=w;
       
   270 	    b=newlevel;
       
   271 	  } else {
       
   272 	    //unlacing starts
       
   273 	    Node right_n=right[w];
       
   274 	    Node left_n=left[w];
       
   275 
       
   276 	    if ( G.valid(right_n) ) {
       
   277 	      if ( G.valid(left_n) ) {
       
   278 		right.set(left_n, right_n);
       
   279 		left.set(right_n, left_n);
       
   280 	      } else {
       
   281 		level_list[lev]=right_n;   
       
   282 		left.set(right_n, INVALID);
       
   283 	      } 
       
   284 	    } else {
       
   285 	      if ( G.valid(left_n) ) {
       
   286 		right.set(left_n, INVALID);
       
   287 	      } else { 
       
   288 		level_list[lev]=INVALID;   
       
   289 	      } 
       
   290 	    } 
       
   291 	    //unlacing ends
       
   292 		
       
   293 	    if ( !G.valid(level_list[lev]) ) {
       
   294 	      
       
   295 	       //gapping starts
       
   296 	      for (int i=lev; i!=k ; ) {
       
   297 		Node v=level_list[++i];
       
   298 		while ( G.valid(v) ) {
       
   299 		  level.set(v,n);
       
   300 		  v=right[v];
       
   301 		}
       
   302 		level_list[i]=INVALID;
       
   303 		if ( !what_heur ) active[i]=INVALID;
       
   304 	      }	     
       
   305 
       
   306 	      level.set(w,n);
       
   307 	      b=lev-1;
       
   308 	      k=b;
       
   309 	      //gapping ends
       
   310 	    
       
   311 	    } else {
       
   312 	      
       
   313 	      if ( newlevel == n ) level.set(w,n); 
       
   314 	      else {
       
   315 		level.set(w,++newlevel);
       
   316 		next.set(w,active[newlevel]);
       
   317 		active[newlevel]=w;
       
   318 		if ( what_heur ) b=newlevel;
       
   319 		if ( k < newlevel ) ++k;      //now k=newlevel
       
   320 		Node first=level_list[newlevel];
       
   321 		if ( G.valid(first) ) left.set(first,w);
       
   322 		right.set(w,first);
       
   323 		left.set(w,INVALID);
       
   324 		level_list[newlevel]=w;
       
   325 	      }
       
   326 	    }
       
   327 
       
   328 
       
   329 	    ++relabel; 
       
   330 	    if ( relabel >= heur ) {
       
   331 	      relabel=0;
       
   332 	      if ( what_heur ) {
       
   333 		what_heur=0;
       
   334 		heur=heur0;
       
   335 		end=false;
       
   336 	      } else {
       
   337 		what_heur=1;
       
   338 		heur=heur1;
       
   339 		b=k; 
       
   340 	      }
       
   341 	    }
       
   342 	  } //phase 0
       
   343 	  
       
   344 	  
       
   345 	} // if ( exc > 0 )
       
   346 	  
       
   347 	
       
   348 	}  // if stack[b] is nonempty
       
   349 	
       
   350       } // while(true)
       
   351 
       
   352 
       
   353       value = excess[t];
       
   354       /*Max flow value.*/
       
   355      
       
   356     } //void run()
       
   357 
       
   358 
       
   359 
       
   360 
       
   361 
       
   362     /*
       
   363       Returns the maximum value of a flow.
       
   364      */
       
   365 
       
   366     T flowValue() {
       
   367       return value;
       
   368     }
       
   369 
       
   370 
       
   371     FlowMap Flow() {
       
   372       return flow;
       
   373       }
       
   374 
       
   375 
       
   376     
       
   377     void Flow(FlowMap& _flow ) {
       
   378       NodeIt v;
       
   379       for(G.first(v) ; G.valid(v); G.next(v))
       
   380 	_flow.set(v,flow[v]);
       
   381     }
       
   382 
       
   383 
       
   384 
       
   385     /*
       
   386       Returns the minimum min cut, by a bfs from s in the residual graph.
       
   387     */
       
   388    
       
   389     template<typename _CutMap>
       
   390     void minMinCut(_CutMap& M) {
       
   391     
       
   392       std::queue<Node> queue;
       
   393       
       
   394       M.set(s,true);      
       
   395       queue.push(s);
       
   396 
       
   397       while (!queue.empty()) {
       
   398         Node w=queue.front();
       
   399 	queue.pop();
       
   400 
       
   401 	OutEdgeIt e;
       
   402 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   403 	  Node v=G.target(e);
       
   404 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   405 	    queue.push(v);
       
   406 	    M.set(v, true);
       
   407 	  }
       
   408 	} 
       
   409 
       
   410 	InEdgeIt f;
       
   411 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   412 	  Node v=G.source(f);
       
   413 	  if (!M[v] && flow[f] > 0 ) {
       
   414 	    queue.push(v);
       
   415 	    M.set(v, true);
       
   416 	  }
       
   417 	} 
       
   418       }
       
   419     }
       
   420 
       
   421 
       
   422   
       
   423     /*
       
   424       Returns the maximum min cut, by a reverse bfs 
       
   425       from t in the residual graph.
       
   426     */
       
   427     
       
   428     template<typename _CutMap>
       
   429     void maxMinCut(_CutMap& M) {
       
   430     
       
   431       std::queue<Node> queue;
       
   432       
       
   433       M.set(t,true);        
       
   434       queue.push(t);
       
   435 
       
   436       while (!queue.empty()) {
       
   437         Node w=queue.front();
       
   438 	queue.pop();
       
   439 
       
   440 
       
   441 	InEdgeIt e;
       
   442 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   443 	  Node v=G.source(e);
       
   444 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   445 	    queue.push(v);
       
   446 	    M.set(v, true);
       
   447 	  }
       
   448 	}
       
   449 	
       
   450 	OutEdgeIt f;
       
   451 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   452 	  Node v=G.target(f);
       
   453 	  if (!M[v] && flow[f] > 0 ) {
       
   454 	    queue.push(v);
       
   455 	    M.set(v, true);
       
   456 	  }
       
   457 	}
       
   458       }
       
   459 
       
   460       NodeIt v;
       
   461       for(G.first(v) ; G.valid(v); G.next(v)) {
       
   462 	M.set(v, !M[v]);
       
   463       }
       
   464 
       
   465     }
       
   466 
       
   467 
       
   468 
       
   469     template<typename CutMap>
       
   470     void minCut(CutMap& M) {
       
   471       minMinCut(M);
       
   472     }
       
   473 
       
   474     
       
   475     
       
   476     void resetTarget (Node _t) {t=_t;}
       
   477     void resetSource (Node _s) {s=_s;}
       
   478    
       
   479     void resetCap (CapMap _cap) {capacity=_cap;}
       
   480 
       
   481     void resetFlow (FlowMap _flow, bool _constzero) {
       
   482       flow=_flow;
       
   483       constzero=_constzero;
       
   484     }
       
   485 
       
   486 
       
   487   };
       
   488 
       
   489 } //namespace lemon
       
   490 
       
   491 #endif //LEMON_PREFLOW_RES_H
       
   492 
       
   493 
       
   494 
       
   495