src/work/marci/graph_concept.h
changeset 1365 c280de819a73
parent 986 e997802b855c
equal deleted inserted replaced
9:94912d245462 -1:000000000000
     1 // -*- c++ -*-
       
     2 #ifndef LEMON_GRAPH_H
       
     3 #define LEMON_GRAPH_H
       
     4 
       
     5 ///\file
       
     6 ///\brief Declaration of GraphConcept.
       
     7 
       
     8 #include <lemon/invalid.h>
       
     9 
       
    10 namespace lemon {
       
    11 
       
    12   /// @defgroup empty_graph The GraphConcept class
       
    13   /// @{
       
    14 
       
    15   /// An empty graph class.
       
    16   
       
    17   /// This class provides all the common features of a graph structure,
       
    18   /// however completely without implementations and real data structures
       
    19   /// behind the interface.
       
    20   /// All graph algorithms should compile with this class, but it will not
       
    21   /// run properly, of course.
       
    22   ///
       
    23   /// It can be used for checking the interface compatibility,
       
    24   /// or it can serve as a skeleton of a new graph structure.
       
    25   /// 
       
    26   /// Also, you will find here the full documentation of a certain graph
       
    27   /// feature, the documentation of a real graph imlementation
       
    28   /// like @ref ListGraph or
       
    29   /// @ref SmartGraph will just refer to this structure.
       
    30   class GraphConcept
       
    31   {
       
    32   public:
       
    33     /// Defalult constructor.
       
    34     GraphConcept() { }
       
    35 
       
    36     /// \brief Copy consructor.
       
    37     /// 
       
    38     /// \todo It is not clear, what we expect from a copy constructor.
       
    39     /// E.g. How to assign the nodes/edges to each other? What about maps?
       
    40     GraphConcept(const GraphConcept&) { }
       
    41 
       
    42     /// \brief The base type of the node iterators.
       
    43     ///
       
    44     /// This is the base type of each node iterators,
       
    45     /// thus each kind of node iterator will convert to this.
       
    46     /// Sometimes it is said to be a trivial iterator.
       
    47     class Node {
       
    48     public:
       
    49       /// @warning The default constructor sets the iterator
       
    50       /// to an undefined value.
       
    51       Node() { }   //FIXME
       
    52 
       
    53       // /// Copy constructor.
       
    54       // Node(const Node&) { }
       
    55 
       
    56       /// \brief Invalid constructor \& conversion.
       
    57       /// 
       
    58       /// This constructor initializes the iterator to be invalid.
       
    59       /// \sa Invalid for more details.
       
    60       Node(const Invalid&) { }
       
    61       
       
    62       /// Two iterators are equal if and only if they point to the
       
    63       /// same object or both are invalid.
       
    64       bool operator==(Node n) const { return true; }
       
    65 
       
    66       /// \sa \ref operator==(Node n)
       
    67       ///
       
    68       bool operator!=(Node n) const { return true; }
       
    69 
       
    70       bool operator<(Node n) const { return true; }
       
    71     };
       
    72     
       
    73     /// The base type of the edge iterators.
       
    74     class Edge {
       
    75     public:
       
    76       /// @warning The default constructor sets the iterator
       
    77       /// to an undefined value.
       
    78       Edge() { }   //FIXME
       
    79 
       
    80       // /// Copy constructor.
       
    81       // Edge(const Edge&) { }
       
    82 
       
    83       /// Initialize the iterator to be invalid
       
    84       Edge(const Invalid&) { }
       
    85       /// Two iterators are equal if and only if they point to the
       
    86       /// same object or both are invalid.
       
    87       bool operator==(Edge n) const { return true; }
       
    88       bool operator!=(Edge n) const { return true; }
       
    89       bool operator<(Edge n) const { return true; }
       
    90     };
       
    91     
       
    92     //  class SymEdgeIt : public Edge {};
       
    93 
       
    94 
       
    95     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
       
    96 
       
    97 //     Node getNext(Node) const {}
       
    98 //     InEdgeIt getNext(InEdgeIt) const {}
       
    99 //     OutEdgeIt getNext(OutEdgeIt) const {}
       
   100 //     //SymEdgeIt getNext(SymEdgeIt) const {}
       
   101 //     EdgeIt getNext(EdgeIt) const {}
       
   102 
       
   103     //SymEdgeIt &next(SymEdgeIt &) const {}
       
   104 
       
   105 
       
   106     /// Gives back the target node of an edge.
       
   107     Node target(const Edge&) const { return INVALID; }
       
   108     /// Gives back the source node of an edge.
       
   109     Node source(const Edge&) const { return INVALID; }
       
   110   
       
   111     //   Node aNode(SymEdgeIt) const {}
       
   112     //   Node bNode(SymEdgeIt) const {}
       
   113 
       
   114     /// \brief Checks if a node iterator is valid
       
   115     /// 
       
   116     /// \todo Maybe, it would be better if iterator converted to
       
   117     /// bool directly, as Jacint prefers.
       
   118     bool valid(const Node&) const { return true; }
       
   119     /// \brief Checks if an edge iterator is valid
       
   120     /// 
       
   121     /// \todo Maybe, it would be better if iterator converted to
       
   122     /// bool directly, as Jacint prefers.
       
   123     bool valid(const Edge&) const { return true; }
       
   124 
       
   125     /// \brief Gives back the \e id of a node.
       
   126     /// 
       
   127     /// \warning Not all graph structures provide this feature.
       
   128     ///
       
   129     int id(const Node&) const { return 0; }
       
   130     /// \brief Gives back the \e id of an edge.
       
   131     ///
       
   132     /// \warning Not all graph structures provide this feature.
       
   133     ///
       
   134     int id(const Edge&) const { return 0; }
       
   135 
       
   136     //void setInvalid(Node &) const {};
       
   137     //void setInvalid(Edge &) const {};
       
   138   
       
   139     /// \brief Add a new node to the graph.
       
   140     ///
       
   141     /// \return the new node.
       
   142     Node addNode() { return INVALID; }
       
   143     /// \brief Add a new edge to the graph.
       
   144     ///
       
   145     /// Add a new edge to the graph with source node \c source
       
   146     /// and target node \c target.
       
   147     /// \return the new edge.
       
   148     Edge addEdge(const Node& source, const Node& target) { return INVALID; }
       
   149     
       
   150     /// \brief Resets the graph.
       
   151     /// 
       
   152     /// This function deletes all edges and nodes of the graph.
       
   153     /// It also frees the memory allocated to store them.
       
   154     /// \todo What happens with the maps?
       
   155     void clear() { }
       
   156 
       
   157     /// Read/write/reference map of the nodes to type \c T.
       
   158 
       
   159     /// Read/write/reference map of the nodes to type \c T.
       
   160     /// \sa MemoryMapConcept
       
   161     /// \todo We may need copy constructor
       
   162     /// \todo We may need conversion from other nodetype
       
   163     /// \todo We may need operator=
       
   164     /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   165     /// needs extra attention!
       
   166 
       
   167     template<class T> class NodeMap
       
   168     {
       
   169     public:
       
   170       typedef T Value;
       
   171       typedef Node Key;
       
   172 
       
   173       NodeMap(const GraphConcept& g) { }
       
   174       NodeMap(const GraphConcept& g, T t) { }
       
   175 
       
   176       template<typename TT> NodeMap(const NodeMap<TT>& m) { }
       
   177 
       
   178       /// Sets the value of a node.
       
   179 
       
   180       /// Sets the value associated with node \c i to the value \c t.
       
   181       ///
       
   182       void set(Node i, T t) {}
       
   183       /// Gets the value of a node.
       
   184       T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
       
   185       T &operator[](Node i) {return *(T*)0;}
       
   186       const T &operator[](Node i) const {return *(T*)0;}
       
   187 
       
   188       /// Updates the map if the graph has been changed
       
   189 
       
   190       /// \todo Do we need this?
       
   191       ///
       
   192       void update() { }
       
   193       //void update(T a) { }   //FIXME: Is it necessary
       
   194     };
       
   195 
       
   196     ///Read/write/reference map of the edges to type \c T.
       
   197 
       
   198     /// Read/write/reference map of the edges to type \c T.
       
   199     /// It behaves exactly in the same way as \ref NodeMap.
       
   200     /// \sa NodeMap
       
   201     /// \sa MemoryMapConcept
       
   202     /// \todo We may need copy constructor
       
   203     /// \todo We may need conversion from other edgetype
       
   204     /// \todo We may need operator=
       
   205     template<class T> class EdgeMap
       
   206     {
       
   207     public:
       
   208       typedef T Value;
       
   209       typedef Edge Key;
       
   210 
       
   211       EdgeMap(const GraphConcept& g) {}
       
   212       EdgeMap(const GraphConcept& g, T t) {}
       
   213     
       
   214       void set(Edge i, T t) {}
       
   215       T get(Edge i) const {return *(T*)0;}
       
   216       T &operator[](Edge i) {return *(T*)0;}
       
   217     
       
   218       void update() { }
       
   219       //void update(T a) { }   //FIXME: Is it necessary
       
   220     };
       
   221   };
       
   222 
       
   223 
       
   224   /// \brief Node-iterable graph concept.
       
   225   ///
       
   226   /// A graph class which provides functions to 
       
   227   /// iterate on its nodes.
       
   228   class NodeIterableGraphConcept : virtual public GraphConcept
       
   229   {
       
   230   public:
       
   231 
       
   232     /// \brief This iterator goes trough the nodes of the graph.
       
   233     ///
       
   234     /// This iterator goes trough the \e nodes of the graph.
       
   235     /// Its usage is quite simple, for example you can count the number
       
   236     /// of nodes in graph \c g of type \c Graph as follows.
       
   237     /// \code
       
   238     /// int count=0;
       
   239     /// for(Graph::NodeIt n(g); g.valid(n); g.next(n)) ++count;
       
   240     /// \endcode
       
   241     class NodeIt : public Node {
       
   242     public:
       
   243       /// @warning The default constructor sets the iterator.
       
   244       /// to an undefined value.
       
   245       NodeIt() { }
       
   246       // /// Copy constructor
       
   247       //NodeIt(const NodeIt& n) { }
       
   248       /// Initialize the iterator to be invalid.
       
   249       NodeIt(const Invalid&) { }
       
   250       /// \brief This constructor sets the iterator to first node.
       
   251       ///
       
   252       /// This constructor set the iterator to the first 
       
   253       /// node of the graph \c g.
       
   254       ///
       
   255       ///@param g the graph
       
   256       NodeIt(const GraphConcept& g) { }
       
   257     };
       
   258 
       
   259     /// The first node.
       
   260     NodeIt &first(NodeIt &i) const { return i; }
       
   261 
       
   262     /// Go to the next node.
       
   263     NodeIt &next(NodeIt &i) const { return i; }
       
   264   };
       
   265 
       
   266 
       
   267   /// \brief Edge-iterable graph concept.
       
   268   ///
       
   269   /// A graph class which provides functions to 
       
   270   /// iterate on its edges.
       
   271   class EdgeIterableGraphConcept : virtual public GraphConcept
       
   272   {
       
   273   public:
       
   274 
       
   275     /// \brief This iterator goes trough the edges of the graph.
       
   276     ///
       
   277     /// This iterator goes trough the \e edges of the graph.
       
   278     /// Its usage is quite simple, for example you can count the number
       
   279     /// of edges in graph \c g of type \c Graph as follows.
       
   280     /// \code
       
   281     /// int count=0;
       
   282     /// for(Graph::EdgeIt e(g); g.valid(e); g.next(e)) ++count;
       
   283     /// \endcode
       
   284     class EdgeIt : public Edge {
       
   285     public:
       
   286       /// @warning The default constructor sets the iterator.
       
   287       /// to an undefined value.
       
   288       EdgeIt() { }
       
   289       // /// Copy constructor
       
   290       // EdgeIt(const EdgeIt&) { }
       
   291       /// Initialize the iterator to be invalid.
       
   292       EdgeIt(const Invalid&) { }
       
   293       /// \brief This constructor sets the iterator to first edge.
       
   294       ///
       
   295       /// This constructor set the iterator to the first 
       
   296       /// edge of the graph \c g.
       
   297       ///
       
   298       ///@param g the graph
       
   299       EdgeIt(const GraphConcept& g) { }
       
   300     };
       
   301 
       
   302     /// The first edge.
       
   303     EdgeIt &first(EdgeIt &i) const { return i; }
       
   304 
       
   305     /// Go to the next edge.
       
   306     EdgeIt &next(EdgeIt &i) const { return i; }
       
   307   };
       
   308 
       
   309 
       
   310   /// \brief Out-edge-iterable graph concept.
       
   311   ///
       
   312   /// A graph class which provides functions to 
       
   313   /// iterate on out-edges of any node.
       
   314   class OutEdgeIterableGraphConcept : virtual public GraphConcept
       
   315   {
       
   316   public:
       
   317 
       
   318     /// \brief This iterator goes trough the outgoing edges of a node.
       
   319     ///
       
   320     /// This iterator goes trough the \e outgoing edges of a certain node
       
   321     /// of a graph.
       
   322     /// Its usage is quite simple, for example you can count the number
       
   323     /// of outgoing edges of a node \c n
       
   324     /// in graph \c g of type \c Graph as follows.
       
   325     /// \code
       
   326     /// int count=0;
       
   327     /// for(Graph::OutEdgeIt e(g, n); g.valid(e); g.next(e)) ++count;
       
   328     /// \endcode
       
   329     class OutEdgeIt : public Edge {
       
   330     public:
       
   331       /// @warning The default constructor sets the iterator.
       
   332       /// to an undefined value.
       
   333       OutEdgeIt() { }
       
   334       /// Initialize the iterator to be invalid.
       
   335       OutEdgeIt(const Invalid&) { }
       
   336       /// \brief This constructor sets the iterator to first outgoing edge.
       
   337       ///
       
   338       /// This constructor set the iterator to the first outgoing edge of
       
   339       /// node
       
   340       ///@param n the node
       
   341       ///@param g the graph
       
   342       OutEdgeIt(const GraphConcept& g, const Node& n) { }
       
   343     };
       
   344 
       
   345     /// The first outgoing edge.
       
   346     OutEdgeIt &first(OutEdgeIt &i, const Node& n) const { return i; }
       
   347 
       
   348     /// Go to the next outgoing edge.
       
   349     OutEdgeIt &next(OutEdgeIt &i) const { return i; }
       
   350 
       
   351     Node aNode(const OutEdgeIt&) const { return Node(); }
       
   352     Node bNode(const OutEdgeIt&) const { return Node(); }
       
   353   };
       
   354 
       
   355 
       
   356   /// \brief In-edge-iterable graph concept.
       
   357   ///
       
   358   /// A Graph class which provides a function to 
       
   359   /// iterate on in-edges of any node.
       
   360   class InEdgeIterableGraphConcept : virtual public GraphConcept
       
   361   {
       
   362   public:
       
   363 
       
   364     /// \brief This iterator goes trough the incoming edges of a node.
       
   365     /// 
       
   366     /// This iterator goes trough the \e incoming edges of a certain node
       
   367     /// of a graph.
       
   368     /// Its usage is quite simple, for example you can count the number
       
   369     /// of incoming edges of a node \c n
       
   370     /// in graph \c g of type \c Graph as follows.
       
   371     /// \code
       
   372     /// int count=0;
       
   373     /// for(Graph::InEdgeIt e(g, n); g.valid(e); g.next(e)) ++count;
       
   374     /// \endcode
       
   375     class InEdgeIt : public Edge {
       
   376     public:
       
   377       /// @warning The default constructor sets the iterator
       
   378       /// to an undefined value.
       
   379       InEdgeIt() { }
       
   380       /// Initialize the iterator to be invalid
       
   381       InEdgeIt(const Invalid&) { }
       
   382       /// \brief This constructor sets the iterator to first incomig edge.
       
   383       /// 
       
   384       /// This constructor set the iterator to the first incomig edge of
       
   385       /// node
       
   386       ///@param n the node
       
   387       ///@param g the graph
       
   388       InEdgeIt(const GraphConcept& g, const Node& n) { }
       
   389     };
       
   390 
       
   391     /// The first incoming edge.
       
   392     InEdgeIt &first(InEdgeIt &i, const Node& n) const { return i; }
       
   393 
       
   394     /// Go to the next incoming edge.
       
   395     InEdgeIt &next(InEdgeIt &i) const { return i; }
       
   396 
       
   397     Node aNode(const InEdgeIt&) const { return Node(); }
       
   398     Node bNode(const InEdgeIt&) const { return Node(); }
       
   399   };
       
   400 
       
   401 
       
   402   /// \brief Node-erasable graph concept.
       
   403   ///
       
   404   /// A graph class which provides a function to 
       
   405   /// delete any of its nodes.
       
   406   class NodeErasableGraphConcept : virtual public GraphConcept
       
   407   {
       
   408   public:
       
   409     /// Deletes a node.
       
   410     void erase(const Node& n) { }
       
   411   };
       
   412 
       
   413 
       
   414   /// \brief Edge-erasable graph concept.
       
   415   /// 
       
   416   /// A graph class which provides a function to delete any 
       
   417   /// of its edges.
       
   418   class EdgeErasableGraphConcept : virtual public GraphConcept
       
   419   {
       
   420   public:
       
   421     /// Deletes a node.
       
   422     void erase(const Edge& n) { }
       
   423   };
       
   424 
       
   425 
       
   426   /// \brief An empty graph class which provides a function to 
       
   427   /// get the number of its nodes.
       
   428   /// 
       
   429   /// This graph class provides a function for getting the number of its 
       
   430   /// nodes. 
       
   431   /// Clearly, for physical graph structures it can be expected to have such a 
       
   432   /// function. For wrappers or graphs which are given in an implicit way, 
       
   433   /// the implementation can be circumstantial, that is why this composes a 
       
   434   /// separate concept.
       
   435   class NodeCountingGraphConcept : virtual public GraphConcept
       
   436   {
       
   437   public:
       
   438     /// Returns the number of nodes.
       
   439     int nodeNum() const { return 0; }
       
   440   };
       
   441 
       
   442 
       
   443   /// \brief An empty graph class which provides a function to 
       
   444   /// get the number of its edges.
       
   445   /// 
       
   446   /// This graph class provides a function for getting the number of its 
       
   447   /// edges. 
       
   448   /// Clearly, for physical graph structures it can be expected to have such a 
       
   449   /// function. For wrappers or graphs which are given in an implicit way, 
       
   450   /// the implementation can be circumstantial, that is why this composes a 
       
   451   /// separate concept.
       
   452   class EdgeCountingGraphConcept : virtual public GraphConcept
       
   453   {
       
   454   public:
       
   455     /// Returns the number of edges.
       
   456     int edgeNum() const { return 0; }
       
   457   };
       
   458 
       
   459   class FullFeatureGraphConcept : virtual public NodeIterableGraphConcept,
       
   460 				  virtual public EdgeIterableGraphConcept, 
       
   461 				  virtual public OutEdgeIterableGraphConcept, 
       
   462 				  virtual public InEdgeIterableGraphConcept, 
       
   463 				  virtual public NodeCountingGraphConcept {
       
   464   public:
       
   465     FullFeatureGraphConcept() { }
       
   466     using EdgeIterableGraphConcept::next;
       
   467     using NodeIterableGraphConcept::next;
       
   468     using OutEdgeIterableGraphConcept::next;    
       
   469     using InEdgeIterableGraphConcept::next;
       
   470   };
       
   471   
       
   472   /// @}
       
   473 
       
   474 } //namespace lemon
       
   475 
       
   476 
       
   477 
       
   478 // class EmptyBipGraph : public Graph Concept
       
   479 // {
       
   480 //   class ANode {};
       
   481 //   class BNode {};
       
   482 
       
   483 //   ANode &next(ANode &) {}
       
   484 //   BNode &next(BNode &) {}
       
   485 
       
   486 //   ANode &getFirst(ANode &) const {}
       
   487 //   BNode &getFirst(BNode &) const {}
       
   488 
       
   489 //   enum NodeClass { A = 0, B = 1 };
       
   490 //   NodeClass getClass(Node n) {}
       
   491 
       
   492 // }
       
   493 
       
   494 #endif // LEMON_GRAPH_H