src/work/peter/hierarchygraph.h
changeset 1365 c280de819a73
parent 986 e997802b855c
equal deleted inserted replaced
7:d7aa0dc97c56 -1:000000000000
     1 // -*- c++ -*-
       
     2 #ifndef LEMON_NET_GRAPH_H
       
     3 #define LEMON_NET_GRAPH_H
       
     4 
       
     5 ///\file
       
     6 ///\brief Declaration of HierarchyGraph.
       
     7 
       
     8 #include <lemon/invalid.h>
       
     9 #include <lemon/maps.h>
       
    10 
       
    11 /// The namespace of LEMON
       
    12 namespace lemon
       
    13 {
       
    14 
       
    15   // @defgroup empty_graph The HierarchyGraph class
       
    16   // @{
       
    17 
       
    18   /// A graph class in that a simple edge can represent a path.
       
    19 
       
    20   /// This class provides common features of a graph structure
       
    21   /// that represents a network. You can handle with it layers. This
       
    22   /// means that a node in one layer can be a complete network in a nother
       
    23   /// layer.
       
    24 
       
    25   template < class Gact, class Gsub > class HierarchyGraph
       
    26   {
       
    27 
       
    28   public:
       
    29 
       
    30     /// The actual layer
       
    31     Gact actuallayer;
       
    32 
       
    33 
       
    34     /// Map of the subnetworks in the sublayer
       
    35     /// The appropriate edge nodes are also stored here
       
    36 
       
    37     class SubNetwork
       
    38     {
       
    39 
       
    40       struct actedgesubnodestruct
       
    41       {
       
    42 	typename Gact::Edge actedge;
       
    43 	typename Gsub::Node subnode;
       
    44       };
       
    45 
       
    46       int edgenumber;
       
    47       bool connectable;
       
    48       Gact *actuallayer;
       
    49       typename Gact::Node * actuallayernode;
       
    50       Gsub *subnetwork;
       
    51       actedgesubnodestruct *assignments;
       
    52 
       
    53     public:
       
    54 
       
    55       int addAssignment (typename Gact::Edge actedge,
       
    56 			 typename Gsub::Node subnode)
       
    57       {
       
    58 	if (!(actuallayer->valid (actedge)))
       
    59 	  {
       
    60 	    cerr << "The given edge is not in the given network!" << endl;
       
    61 	    return -1;
       
    62 	  }
       
    63 	else if ((actuallayer->id (actuallayer->source (actedge)) !=
       
    64 		  actuallayer->id (*actuallayernode))
       
    65 		 && (actuallayer->id (actuallayer->target (actedge)) !=
       
    66 		     actuallayer->id (*actuallayernode)))
       
    67 	  {
       
    68 	    cerr << "The given edge does not connect to the given node!" <<
       
    69 	      endl;
       
    70 	    return -1;
       
    71 	  }
       
    72 
       
    73 	if (!(subnetwork->valid (subnode)))
       
    74 	  {
       
    75 	    cerr << "The given node is not in the given network!" << endl;
       
    76 	    return -1;
       
    77 	  }
       
    78 
       
    79 	int i = 0;
       
    80 	//while in the array there is valid note that is not equvivalent with the one that would be noted increase i
       
    81 	while ((i < edgenumber)
       
    82 	       && (actuallayer->valid (assignments[i].actedge))
       
    83 	       && (assignments[i].actedge != actedge))
       
    84 	  i++;
       
    85 	if (assignments[i].actedge == actedge)
       
    86 	  {
       
    87 	    cout << "Warning: Redefinement of assigment!!!" << endl;
       
    88 	  }
       
    89 	if (i == edgenumber)
       
    90 	  {
       
    91 	    cout <<
       
    92 	      "This case can't be!!! (because there should be the guven edge in the array already and the cycle had to stop)"
       
    93 	      << endl;
       
    94 	  }
       
    95 	//if(!(actuallayer->valid(assignments[i].actedge)))   //this condition is necessary if we do not obey redefinition
       
    96 	{
       
    97 	  assignments[i].actedge = actedge;
       
    98 	  assignments[i].subnode = subnode;
       
    99 	}
       
   100 
       
   101 	/// If to all of the edges a subnode is assigned then the subnetwork is connectable (attachable?)
       
   102 	/// We do not need to check for further attributes, because to notice an assignment we need
       
   103 	/// all of them to be correctly initialised before.
       
   104 	if (i == edgenumber - 1)
       
   105 	  connectable = 1;
       
   106 
       
   107 	return 0;
       
   108       }
       
   109 
       
   110       int setSubNetwork (Gsub * sn)
       
   111       {
       
   112 	subnetwork = sn;
       
   113 	return 0;
       
   114       }
       
   115 
       
   116       int setActualLayer (Gact * al)
       
   117       {
       
   118 	actuallayer = al;
       
   119 	return 0;
       
   120       }
       
   121 
       
   122       int setActualLayerNode (typename Gact::Node * aln)
       
   123       {
       
   124 	typename Gact::InEdgeIt iei;
       
   125 	typename Gact::OutEdgeIt oei;
       
   126 
       
   127 	actuallayernode = aln;
       
   128 
       
   129 	edgenumber = 0;
       
   130 
       
   131 	if (actuallayer)
       
   132 	  {
       
   133 	    for (iei = actuallayer->first (iei, (*actuallayernode));
       
   134 		 ((actuallayer->valid (iei))
       
   135 		  && (actuallayer->target (iei) == (*actuallayernode)));
       
   136 		 actuallayer->next (iei))
       
   137 	      {
       
   138 		cout << actuallayer->id (actuallayer->
       
   139 					 source (iei)) << " " << actuallayer->
       
   140 		  id (actuallayer->target (iei)) << endl;
       
   141 		edgenumber++;
       
   142 	      }
       
   143 	    //cout << "Number of in-edges: " << edgenumber << endl;
       
   144 	    for (oei = actuallayer->first (oei, (*actuallayernode));
       
   145 		 ((actuallayer->valid (oei))
       
   146 		  && (actuallayer->source (oei) == (*actuallayernode)));
       
   147 		 actuallayer->next (oei))
       
   148 	      {
       
   149 		cout << actuallayer->id (actuallayer->
       
   150 					 source (oei)) << " " << actuallayer->
       
   151 		  id (actuallayer->target (oei)) << endl;
       
   152 		edgenumber++;
       
   153 	      }
       
   154 	    //cout << "Number of in+out-edges: " << edgenumber << endl;
       
   155 	    assignments = new actedgesubnodestruct[edgenumber];
       
   156 	    for (int i = 0; i < edgenumber; i++)
       
   157 	      {
       
   158 		assignments[i].actedge = INVALID;
       
   159 		assignments[i].subnode = INVALID;
       
   160 	      }
       
   161 	  }
       
   162 	else
       
   163 	  {
       
   164 	    cerr << "There is no actual layer defined yet!" << endl;
       
   165 	    return -1;
       
   166 	  }
       
   167 
       
   168 	return 0;
       
   169       }
       
   170 
       
   171     SubNetwork ():edgenumber (0), connectable (false), actuallayer (NULL),
       
   172 	actuallayernode (NULL), subnetwork (NULL),
       
   173 	assignments (NULL)
       
   174       {
       
   175       }
       
   176 
       
   177     };
       
   178 
       
   179     typename Gact::template NodeMap < SubNetwork > subnetworks;
       
   180 
       
   181 
       
   182     /// Defalult constructor.
       
   183     /// We don't need any extra lines, because the actuallayer
       
   184     /// variable has run its constructor, when we have created this class
       
   185     /// So only the two maps has to be initialised here.
       
   186   HierarchyGraph ():subnetworks (actuallayer)
       
   187     {
       
   188     }
       
   189 
       
   190 
       
   191     ///Copy consructor.
       
   192   HierarchyGraph (const HierarchyGraph < Gact, Gsub > &HG):actuallayer (HG.actuallayer),
       
   193       subnetworks
       
   194       (actuallayer)
       
   195     {
       
   196     }
       
   197 
       
   198 
       
   199     /// The base type of the node iterators.
       
   200 
       
   201     /// This is the base type of each node iterators,
       
   202     /// thus each kind of node iterator will convert to this.
       
   203     /// The Node type of the HierarchyGraph is the Node type of the actual layer.
       
   204     typedef typename Gact::Node Node;
       
   205 
       
   206 
       
   207     /// This iterator goes through each node.
       
   208 
       
   209     /// Its usage is quite simple, for example you can count the number
       
   210     /// of nodes in graph \c G of type \c Graph like this:
       
   211     /// \code
       
   212     ///int count=0;
       
   213     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
       
   214     /// \endcode
       
   215     /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
       
   216     typedef typename Gact::NodeIt NodeIt;
       
   217 
       
   218 
       
   219     /// The base type of the edge iterators.
       
   220     /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
       
   221     typedef typename Gact::Edge Edge;
       
   222 
       
   223 
       
   224     /// This iterator goes trough the outgoing edges of a node.
       
   225 
       
   226     /// This iterator goes trough the \e outgoing edges of a certain node
       
   227     /// of a graph.
       
   228     /// Its usage is quite simple, for example you can count the number
       
   229     /// of outgoing edges of a node \c n
       
   230     /// in graph \c G of type \c Graph as follows.
       
   231     /// \code
       
   232     ///int count=0;
       
   233     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
       
   234     /// \endcode
       
   235     /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
       
   236     typedef typename Gact::OutEdgeIt OutEdgeIt;
       
   237 
       
   238 
       
   239     /// This iterator goes trough the incoming edges of a node.
       
   240 
       
   241     /// This iterator goes trough the \e incoming edges of a certain node
       
   242     /// of a graph.
       
   243     /// Its usage is quite simple, for example you can count the number
       
   244     /// of outgoing edges of a node \c n
       
   245     /// in graph \c G of type \c Graph as follows.
       
   246     /// \code
       
   247     ///int count=0;
       
   248     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
       
   249     /// \endcode
       
   250     /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
       
   251     typedef typename Gact::InEdgeIt InEdgeIt;
       
   252 
       
   253 
       
   254     /// This iterator goes through each edge.
       
   255 
       
   256     /// This iterator goes through each edge of a graph.
       
   257     /// Its usage is quite simple, for example you can count the number
       
   258     /// of edges in a graph \c G of type \c Graph as follows:
       
   259     /// \code
       
   260     ///int count=0;
       
   261     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
       
   262     /// \endcode
       
   263     /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
       
   264     typedef typename Gact::EdgeIt EdgeIt;
       
   265 
       
   266 
       
   267     /// First node of the graph.
       
   268 
       
   269     /// \retval i the first node.
       
   270     /// \return the first node.
       
   271     typename Gact::NodeIt & first (typename Gact::NodeIt & i) const
       
   272     {
       
   273       return actuallayer.first (i);
       
   274     }
       
   275 
       
   276 
       
   277     /// The first incoming edge.
       
   278     typename Gact::InEdgeIt & first (typename Gact::InEdgeIt & i,
       
   279 				     typename Gact::Node) const
       
   280     {
       
   281       return actuallayer.first (i);
       
   282     }
       
   283 
       
   284 
       
   285     /// The first outgoing edge.
       
   286     typename Gact::OutEdgeIt & first (typename Gact::OutEdgeIt & i,
       
   287 				      typename Gact::Node) const
       
   288     {
       
   289       return actuallayer.first (i);
       
   290     }
       
   291 
       
   292 
       
   293     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
       
   294     /// The first edge of the Graph.
       
   295     typename Gact::EdgeIt & first (typename Gact::EdgeIt & i) const
       
   296     {
       
   297       return actuallayer.first (i);
       
   298     }
       
   299 
       
   300 
       
   301 //     Node getNext(Node) const {}
       
   302 //     InEdgeIt getNext(InEdgeIt) const {}
       
   303 //     OutEdgeIt getNext(OutEdgeIt) const {}
       
   304 //     //SymEdgeIt getNext(SymEdgeIt) const {}
       
   305 //     EdgeIt getNext(EdgeIt) const {}
       
   306 
       
   307 
       
   308     /// Go to the next node.
       
   309     typename Gact::NodeIt & next (typename Gact::NodeIt & i) const
       
   310     {
       
   311       return actuallayer.next (i);
       
   312     }
       
   313     /// Go to the next incoming edge.
       
   314     typename Gact::InEdgeIt & next (typename Gact::InEdgeIt & i) const
       
   315     {
       
   316       return actuallayer.next (i);
       
   317     }
       
   318     /// Go to the next outgoing edge.
       
   319     typename Gact::OutEdgeIt & next (typename Gact::OutEdgeIt & i) const
       
   320     {
       
   321       return actuallayer.next (i);
       
   322     }
       
   323     //SymEdgeIt &next(SymEdgeIt &) const {}
       
   324     /// Go to the next edge.
       
   325     typename Gact::EdgeIt & next (typename Gact::EdgeIt & i) const
       
   326     {
       
   327       return actuallayer.next (i);
       
   328     }
       
   329 
       
   330     ///Gives back the target node of an edge.
       
   331     typename Gact::Node target (typename Gact::Edge edge) const
       
   332     {
       
   333       return actuallayer.target (edge);
       
   334     }
       
   335     ///Gives back the source node of an edge.
       
   336     typename Gact::Node source (typename Gact::Edge edge) const
       
   337     {
       
   338       return actuallayer.source (edge);
       
   339     }
       
   340 
       
   341     //   Node aNode(InEdgeIt) const {}
       
   342     //   Node aNode(OutEdgeIt) const {}
       
   343     //   Node aNode(SymEdgeIt) const {}
       
   344 
       
   345     //   Node bNode(InEdgeIt) const {}
       
   346     //   Node bNode(OutEdgeIt) const {}
       
   347     //   Node bNode(SymEdgeIt) const {}
       
   348 
       
   349     /// Checks if a node iterator is valid
       
   350 
       
   351     ///\todo Maybe, it would be better if iterator converted to
       
   352     ///bool directly, as Jacint prefers.
       
   353     bool valid (const typename Gact::Node & node) const
       
   354     {
       
   355       return actuallayer.valid (node);
       
   356     }
       
   357     /// Checks if an edge iterator is valid
       
   358 
       
   359     ///\todo Maybe, it would be better if iterator converted to
       
   360     ///bool directly, as Jacint prefers.
       
   361     bool valid (const typename Gact::Edge & edge) const
       
   362     {
       
   363       return actuallayer.valid (edge);
       
   364     }
       
   365 
       
   366     ///Gives back the \e id of a node.
       
   367 
       
   368     ///\warning Not all graph structures provide this feature.
       
   369     ///
       
   370     int id (const typename Gact::Node & node) const
       
   371     {
       
   372       return actuallayer.id (node);
       
   373     }
       
   374     ///Gives back the \e id of an edge.
       
   375 
       
   376     ///\warning Not all graph structures provide this feature.
       
   377     ///
       
   378     int id (const typename Gact::Edge & edge) const
       
   379     {
       
   380       return actuallayer.id (edge);
       
   381     }
       
   382 
       
   383     //void setInvalid(Node &) const {};
       
   384     //void setInvalid(Edge &) const {};
       
   385 
       
   386     ///Add a new node to the graph.
       
   387 
       
   388     /// \return the new node.
       
   389     ///
       
   390     typename Gact::Node addNode ()
       
   391     {
       
   392       return actuallayer.addNode ();
       
   393     }
       
   394     ///Add a new edge to the graph.
       
   395 
       
   396     ///Add a new edge to the graph with source node \c source
       
   397     ///and target node \c target.
       
   398     ///\return the new edge.
       
   399     typename Gact::Edge addEdge (typename Gact::Node node1,
       
   400 				 typename Gact::Node node2)
       
   401     {
       
   402       return actuallayer.addEdge (node1, node2);
       
   403     }
       
   404 
       
   405     /// Resets the graph.
       
   406 
       
   407     /// This function deletes all edges and nodes of the graph.
       
   408     /// It also frees the memory allocated to store them.
       
   409     void clear ()
       
   410     {
       
   411       actuallayer.clear ();
       
   412     }
       
   413 
       
   414     int nodeNum () const
       
   415     {
       
   416       return actuallayer.nodeNum ();
       
   417     }
       
   418     int edgeNum () const
       
   419     {
       
   420       return actuallayer.edgeNum ();
       
   421     }
       
   422 
       
   423     ///Read/write/reference map of the nodes to type \c T.
       
   424 
       
   425     ///Read/write/reference map of the nodes to type \c T.
       
   426     /// \sa MemoryMap
       
   427     /// \todo We may need copy constructor
       
   428     /// \todo We may need conversion from other nodetype
       
   429     /// \todo We may need operator=
       
   430     /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   431     /// needs extra attention!
       
   432 
       
   433     template < class T > class NodeMap
       
   434     {
       
   435     public:
       
   436       typedef T Value;
       
   437       typedef Node Key;
       
   438 
       
   439       NodeMap (const HierarchyGraph &)
       
   440       {
       
   441       }
       
   442       NodeMap (const HierarchyGraph &, T)
       
   443       {
       
   444       }
       
   445 
       
   446       template < typename TT > NodeMap (const NodeMap < TT > &)
       
   447       {
       
   448       }
       
   449 
       
   450       /// Sets the value of a node.
       
   451 
       
   452       /// Sets the value associated with node \c i to the value \c t.
       
   453       ///
       
   454       void set (Node, T)
       
   455       {
       
   456       }
       
   457       // Gets the value of a node.
       
   458       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
       
   459       T & operator[](Node)
       
   460       {
       
   461 	return *(T *) 0;
       
   462       }
       
   463       const T & operator[] (Node) const
       
   464       {
       
   465 	return *(T *) 0;
       
   466       }
       
   467 
       
   468       /// Updates the map if the graph has been changed
       
   469 
       
   470       /// \todo Do we need this?
       
   471       ///
       
   472       void update ()
       
   473       {
       
   474       }
       
   475       void update (T a)
       
   476       {
       
   477       }				//FIXME: Is it necessary
       
   478     };
       
   479 
       
   480     ///Read/write/reference map of the edges to type \c T.
       
   481 
       
   482     ///Read/write/reference map of the edges to type \c T.
       
   483     ///It behaves exactly in the same way as \ref NodeMap.
       
   484     /// \sa NodeMap
       
   485     /// \sa MemoryMap
       
   486     /// \todo We may need copy constructor
       
   487     /// \todo We may need conversion from other edgetype
       
   488     /// \todo We may need operator=
       
   489     template < class T > class EdgeMap
       
   490     {
       
   491     public:
       
   492       typedef T Value;
       
   493       typedef Edge Key;
       
   494 
       
   495       EdgeMap (const HierarchyGraph &)
       
   496       {
       
   497       }
       
   498       EdgeMap (const HierarchyGraph &, T)
       
   499       {
       
   500       }
       
   501 
       
   502       ///\todo It can copy between different types.
       
   503       ///
       
   504       template < typename TT > EdgeMap (const EdgeMap < TT > &)
       
   505       {
       
   506       }
       
   507 
       
   508       void set (Edge, T)
       
   509       {
       
   510       }
       
   511       //T get(Edge) const {return *(T*)0;}
       
   512       T & operator[](Edge)
       
   513       {
       
   514 	return *(T *) 0;
       
   515       }
       
   516       const T & operator[] (Edge) const
       
   517       {
       
   518 	return *(T *) 0;
       
   519       }
       
   520 
       
   521       void update ()
       
   522       {
       
   523       }
       
   524       void update (T a)
       
   525       {
       
   526       }				//FIXME: Is it necessary
       
   527     };
       
   528   };
       
   529 
       
   530   /// An empty erasable graph class.
       
   531 
       
   532   /// This class provides all the common features of an \e erasable graph
       
   533   /// structure,
       
   534   /// however completely without implementations and real data structures
       
   535   /// behind the interface.
       
   536   /// All graph algorithms should compile with this class, but it will not
       
   537   /// run properly, of course.
       
   538   ///
       
   539   /// \todo This blabla could be replaced by a sepatate description about
       
   540   /// s.
       
   541   ///
       
   542   /// It can be used for checking the interface compatibility,
       
   543   /// or it can serve as a skeleton of a new graph structure.
       
   544   ///
       
   545   /// Also, you will find here the full documentation of a certain graph
       
   546   /// feature, the documentation of a real graph imlementation
       
   547   /// like @ref ListGraph or
       
   548   /// @ref SmartGraph will just refer to this structure.
       
   549 template < typename Gact, typename Gsub > class ErasableHierarchyGraph:public HierarchyGraph < Gact,
       
   550     Gsub
       
   551     >
       
   552   {
       
   553   public:
       
   554     /// Deletes a node.
       
   555     void erase (typename Gact::Node n)
       
   556     {
       
   557       actuallayer.erase (n);
       
   558     }
       
   559     /// Deletes an edge.
       
   560     void erase (typename Gact::Edge e)
       
   561     {
       
   562       actuallayer.erase (e);
       
   563     }
       
   564 
       
   565     /// Defalult constructor.
       
   566     ErasableHierarchyGraph ()
       
   567     {
       
   568     }
       
   569     ///Copy consructor.
       
   570     ErasableHierarchyGraph (const HierarchyGraph < Gact, Gsub > &EPG)
       
   571     {
       
   572     }
       
   573   };
       
   574 
       
   575 
       
   576   // @}
       
   577 
       
   578 }				//namespace lemon
       
   579 
       
   580 
       
   581 #endif // LEMON_SKELETON_GRAPH_H