src/lemon/radix_heap.h
changeset 1193 c3585aec8cb3
child 1205 a9a3354b01d4
equal deleted inserted replaced
-1:000000000000 0:65141259f0d0
       
     1 /* -*- C++ -*-
       
     2  * src/lemon/bin_heap.h - Part of LEMON, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef LEMON_RADIX_HEAP_H
       
    18 #define LEMON_RADIX_HEAP_H
       
    19 
       
    20 ///\ingroup auxdat
       
    21 ///\file
       
    22 ///\brief Radix Heap implementation.
       
    23 ///\todo It should be documented.
       
    24 
       
    25 #include <vector>
       
    26 #include <lemon/error.h>
       
    27 
       
    28 namespace lemon {
       
    29 
       
    30   /// \addtogroup auxdat
       
    31   /// @{
       
    32 
       
    33    /// A Binary Heap implementation.
       
    34   
       
    35   ///\todo Please document...
       
    36   ///
       
    37   ///\sa BinHeap
       
    38   ///\sa Dijkstra
       
    39 
       
    40   class UnderFlowPriorityException : public RuntimeError {
       
    41   public:
       
    42     virtual const char* exceptionName() const {
       
    43       return "lemon::UnderFlowPriorityException";
       
    44     }  
       
    45   };
       
    46 
       
    47   template <typename _Item, typename _ItemIntMap>
       
    48   class RadixHeap {
       
    49 
       
    50   public:
       
    51     typedef _Item Item;
       
    52     // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
       
    53     typedef int Prio;
       
    54     typedef _ItemIntMap ItemIntMap;
       
    55 
       
    56     /**
       
    57      * Each Item element have a state associated to it. It may be "in heap",
       
    58      * "pre heap" or "post heap". The later two are indifferent from the
       
    59      * heap's point of view, but may be useful to the user.
       
    60      *
       
    61      * The ItemIntMap _should_ be initialized in such way, that it maps
       
    62      * PRE_HEAP (-1) to any element to be put in the heap...
       
    63      */
       
    64     ///\todo it is used nowhere
       
    65     ///
       
    66     enum state_enum {
       
    67       IN_HEAP = 0,
       
    68       PRE_HEAP = -1,
       
    69       POST_HEAP = -2
       
    70     };
       
    71 
       
    72   private:
       
    73     
       
    74     struct RadixItem {
       
    75       int prev, next, box;
       
    76       Item item;
       
    77       int prio;
       
    78       RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
       
    79     };
       
    80 
       
    81     struct RadixBox {
       
    82       int first;
       
    83       int min, size;
       
    84       RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
       
    85     };
       
    86 
       
    87     std::vector<RadixItem> data;
       
    88     std::vector<RadixBox> boxes;
       
    89 
       
    90     ItemIntMap &iim;
       
    91 
       
    92 
       
    93   public:
       
    94     ///\e
       
    95     explicit RadixHeap(ItemIntMap &_iim) : iim(_iim) {
       
    96       boxes.push_back(RadixBox(0, 1));
       
    97       boxes.push_back(RadixBox(1, 1));
       
    98     }
       
    99 
       
   100     ///\e
       
   101     RadixHeap(ItemIntMap &_iim, int capacity) : iim(_iim) {
       
   102       boxes.push_back(RadixBox(0, 1));
       
   103       boxes.push_back(RadixBox(1, 1));
       
   104       while (upper(boxes.back(), capacity)) {
       
   105 	extend();
       
   106       }
       
   107     }
       
   108 
       
   109     ///\e
       
   110     int size() const { return data.size(); }
       
   111     ///\e
       
   112     bool empty() const { return data.empty(); }
       
   113 
       
   114   private:
       
   115 
       
   116     bool upper(int box, Prio prio) {
       
   117       return prio < boxes[box].min;
       
   118     }
       
   119 
       
   120     bool lower(int box, Prio prio) {
       
   121       return prio >= boxes[box].min + boxes[box].size;
       
   122     }
       
   123 
       
   124     /// \brief Remove item from the box list.
       
   125     void remove(int index) {
       
   126       if (data[index].prev >= 0) {
       
   127 	data[data[index].prev].next = data[index].next;
       
   128       } else {
       
   129 	boxes[data[index].box].first = data[index].next;
       
   130       }
       
   131       if (data[index].next >= 0) {
       
   132 	data[data[index].next].prev = data[index].prev;
       
   133       }
       
   134     }
       
   135 
       
   136     /// \brief Insert item into the box list.
       
   137     void insert(int box, int index) {
       
   138       if (boxes[box].first == -1) {
       
   139 	boxes[box].first = index;
       
   140 	data[index].next = data[index].prev = -1;
       
   141       } else {
       
   142 	data[index].next = boxes[box].first;
       
   143 	data[boxes[box].first].prev = index;
       
   144 	data[index].prev = -1;
       
   145 	boxes[box].first = index;
       
   146       }
       
   147       data[index].box = box;
       
   148     }
       
   149 
       
   150     /// \brief Add a new box to the box list.
       
   151     void extend() {
       
   152       int min = boxes.back().min + boxes.back().size;
       
   153       int size = 2 * boxes.back().size;
       
   154       boxes.push_back(RadixBox(min, size));
       
   155     }
       
   156 
       
   157     /// \brief Move an item up into the proper box.
       
   158     void bubble_up(int index) {
       
   159       if (!lower(data[index].box, index)) return;
       
   160       remove(index);
       
   161       int box = findUp(data[index].box, data[index].prio);
       
   162       insert(box, index);      
       
   163     }
       
   164 
       
   165     /// \brief Find up the proper box for the item with the given prio.
       
   166     int findUp(int start, int prio) {
       
   167       while (lower(start, prio)) {
       
   168 	if (++start == (int)boxes.size()) {
       
   169 	  extend();
       
   170 	}
       
   171       }
       
   172       return start;
       
   173     }
       
   174 
       
   175     /// \brief Move an item down into the proper box.
       
   176     void bubble_down(int index) {
       
   177       if (!upper(data[index].box, data[index].prio)) return;
       
   178       remove(index);
       
   179       int box = findDown(data[index].box, data[index].prio);
       
   180       insert(box, index);
       
   181     }
       
   182 
       
   183     /// \brief Find up the proper box for the item with the given prio.
       
   184     int findDown(int start, int prio) {
       
   185       while (upper(start, prio)) {
       
   186 	if (--start < 0) throw UnderFlowPriorityException();
       
   187       }
       
   188       return start;
       
   189     }
       
   190 
       
   191     /// \brief Find the first not empty box.
       
   192     int findFirst() {
       
   193       int first = 0;
       
   194       while (boxes[first].first == -1) ++first;
       
   195       return first;
       
   196     }
       
   197 
       
   198     /// \brief Gives back the minimal prio of the box.
       
   199     int minValue(int box) {
       
   200       int min = data[boxes[box].first].prio;
       
   201       for (int k = boxes[box].first; k != -1; k = data[k].next) {
       
   202 	if (data[k].prio < min) min = data[k].prio;
       
   203       }
       
   204       return min;
       
   205     }
       
   206 
       
   207     /// \brief Rearrange the items of the heap and makes the 
       
   208     /// first box not empty.
       
   209     void moveDown() {
       
   210       //      print(); printf("moveDown\n"); fflush(stdout);       
       
   211       int box = findFirst();
       
   212       if (box == 0) return;
       
   213       int min = minValue(box);
       
   214       for (int i = 0; i <= box; ++i) {
       
   215 	boxes[i].min = min;
       
   216 	min += boxes[i].size;
       
   217       }
       
   218       int curr = boxes[box].first, next;
       
   219       while (curr != -1) {
       
   220 	next = data[curr].next;
       
   221 	bubble_down(curr);
       
   222 	curr = next;
       
   223       }      
       
   224     }
       
   225 
       
   226     void relocate_last(int index) {
       
   227       if (index != (int)data.size() - 1) {
       
   228 	data[index] = data.back();
       
   229 	if (data[index].prev != -1) {
       
   230 	  data[data[index].prev].next = index;
       
   231 	} else {
       
   232 	  boxes[data[index].box].first = index;
       
   233 	}
       
   234 	if (data[index].next != -1) {
       
   235 	  data[data[index].next].prev = index;
       
   236 	}
       
   237 	iim[data[index].item] = index;
       
   238       }
       
   239       data.pop_back();
       
   240     }
       
   241 
       
   242   public:
       
   243 
       
   244     ///\e
       
   245     void push(const Item &i, const Prio &p) {
       
   246       fflush(stdout);
       
   247       int n = data.size();
       
   248       iim.set(i, n);
       
   249       data.push_back(RadixItem(i, p));
       
   250       while (lower(boxes.size() - 1, p)) {
       
   251 	extend();
       
   252       }
       
   253       int box = findDown(boxes.size() - 1, p);
       
   254       insert(box, n);
       
   255       //      printf("Push %d\n", p);
       
   256       //print();
       
   257     }
       
   258 
       
   259     ///\e
       
   260     Item top() const {
       
   261       //      print(); printf("top\n");  fflush(stdout);
       
   262       const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
       
   263       return data[boxes[0].first].item;
       
   264       //      print(); printf("top_end\n");  fflush(stdout);
       
   265     }
       
   266 
       
   267     /// Returns the prio of the top element of the heap.
       
   268     Prio prio() const {
       
   269       //      print(); printf("prio\n"); fflush(stdout);
       
   270       const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
       
   271       return data[boxes[0].first].prio;
       
   272      }
       
   273 
       
   274     ///\e
       
   275     void pop() {
       
   276       //      print(); printf("pop\n"); fflush(stdout);
       
   277       moveDown();
       
   278       int index = boxes[0].first;
       
   279       iim[data[index].item] = POST_HEAP;
       
   280       remove(index);
       
   281       relocate_last(index);
       
   282       //      printf("Pop \n");
       
   283       //print();
       
   284     }
       
   285 
       
   286     ///\e
       
   287     void erase(const Item &i) {
       
   288       int index = iim[i];
       
   289       iim[i] = POST_HEAP;
       
   290       remove(index);
       
   291       relocate_last(index);
       
   292    }
       
   293 
       
   294     ///\e
       
   295     Prio operator[](const Item &i) const {
       
   296       int idx = iim[i];
       
   297       return data[idx].prio;
       
   298     }
       
   299 
       
   300     ///\e
       
   301     void set(const Item &i, const Prio &p) {
       
   302       int idx = iim[i];
       
   303       if( idx < 0 ) {
       
   304 	push(i, p);
       
   305       }
       
   306       else if( p >= data[idx].prio ) {
       
   307 	data[idx].prio = p;
       
   308 	bubble_up(idx);
       
   309       } else {
       
   310 	data[idx].prio = p;
       
   311 	bubble_down(idx);
       
   312       }
       
   313     }
       
   314 
       
   315     ///\e
       
   316     void decrease(const Item &i, const Prio &p) {
       
   317       //      print(); printf("decrease\n"); fflush(stdout);
       
   318       int idx = iim[i];
       
   319       data[idx].prio = p;
       
   320       bubble_down(idx);
       
   321     }
       
   322 
       
   323     ///\e
       
   324     void increase(const Item &i, const Prio &p) {
       
   325       int idx = iim[i];
       
   326       data[idx].prio = p;
       
   327       bubble_up(idx);
       
   328     }
       
   329 
       
   330     ///\e
       
   331     state_enum state(const Item &i) const {
       
   332       int s = iim[i];
       
   333       if( s >= 0 ) s = 0;
       
   334       return state_enum(s);
       
   335     }
       
   336 
       
   337     void print() const {
       
   338       for (int i = 0; i < boxes.size(); ++i) {
       
   339 	printf("(%d, %d) ", boxes[i].min, boxes[i].size);
       
   340 	for (int k = boxes[i].first; k != -1; k = data[k].next) {
       
   341 	  printf("%d ", data[k].prio);
       
   342 	}
       
   343 	printf("\n");
       
   344       }
       
   345       fflush(stdout);
       
   346     }
       
   347 
       
   348   }; // class RadixHeap
       
   349 
       
   350 
       
   351   ///@}
       
   352 
       
   353 } // namespace lemon
       
   354 
       
   355 #endif // LEMON_RADIX_HEAP_H