src/hugo/min_cost_flows.h
changeset 898 c46cfb2651ec
equal deleted inserted replaced
-1:000000000000 0:243173cd3be1
       
     1 // -*- c++ -*-
       
     2 #ifndef HUGO_MINCOSTFLOWS_H
       
     3 #define HUGO_MINCOSTFLOWS_H
       
     4 
       
     5 ///\ingroup flowalgs
       
     6 ///\file
       
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
       
     8 
       
     9 
       
    10 #include <hugo/dijkstra.h>
       
    11 #include <hugo/graph_wrapper.h>
       
    12 #include <hugo/maps.h>
       
    13 #include <vector>
       
    14 
       
    15 namespace hugo {
       
    16 
       
    17 /// \addtogroup flowalgs
       
    18 /// @{
       
    19 
       
    20   ///\brief Implementation of an algorithm for finding a flow of value \c k 
       
    21   ///(for small values of \c k) having minimal total cost between 2 nodes 
       
    22   /// 
       
    23   ///
       
    24   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
       
    25   /// an algorithm for finding a flow of value \c k 
       
    26   /// having minimal total cost 
       
    27   /// from a given source node to a given target node in an
       
    28   /// edge-weighted directed graph. To this end, 
       
    29   /// the edge-capacities and edge-weitghs have to be nonnegative. 
       
    30   /// The edge-capacities should be integers, but the edge-weights can be 
       
    31   /// integers, reals or of other comparable numeric type.
       
    32   /// This algorithm is intended to use only for small values of \c k, 
       
    33   /// since it is only polynomial in k, 
       
    34   /// not in the length of k (which is log k). 
       
    35   /// In order to find the minimum cost flow of value \c k it 
       
    36   /// finds the minimum cost flow of value \c i for every 
       
    37   /// \c i between 0 and \c k. 
       
    38   ///
       
    39   ///\param Graph The directed graph type the algorithm runs on.
       
    40   ///\param LengthMap The type of the length map.
       
    41   ///\param CapacityMap The capacity map type.
       
    42   ///
       
    43   ///\author Attila Bernath
       
    44   template <typename Graph, typename LengthMap, typename CapacityMap>
       
    45   class MinCostFlows {
       
    46 
       
    47     typedef typename LengthMap::ValueType Length;
       
    48 
       
    49     //Warning: this should be integer type
       
    50     typedef typename CapacityMap::ValueType Capacity;
       
    51     
       
    52     typedef typename Graph::Node Node;
       
    53     typedef typename Graph::NodeIt NodeIt;
       
    54     typedef typename Graph::Edge Edge;
       
    55     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    56     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
       
    57 
       
    58 
       
    59     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
       
    60     typedef typename ResGraphType::Edge ResGraphEdge;
       
    61 
       
    62     class ModLengthMap {   
       
    63       typedef typename Graph::template NodeMap<Length> NodeMap;
       
    64       const ResGraphType& G;
       
    65       const LengthMap &ol;
       
    66       const NodeMap &pot;
       
    67     public :
       
    68       typedef typename LengthMap::KeyType KeyType;
       
    69       typedef typename LengthMap::ValueType ValueType;
       
    70 	
       
    71       ValueType operator[](typename ResGraphType::Edge e) const {     
       
    72 	if (G.forward(e))
       
    73 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
       
    74 	else
       
    75 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
       
    76       }     
       
    77 	
       
    78       ModLengthMap(const ResGraphType& _G,
       
    79 		   const LengthMap &o,  const NodeMap &p) : 
       
    80 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
       
    81     };//ModLengthMap
       
    82 
       
    83 
       
    84   protected:
       
    85     
       
    86     //Input
       
    87     const Graph& G;
       
    88     const LengthMap& length;
       
    89     const CapacityMap& capacity;
       
    90 
       
    91 
       
    92     //auxiliary variables
       
    93 
       
    94     //To store the flow
       
    95     EdgeIntMap flow; 
       
    96     //To store the potential (dual variables)
       
    97     typedef typename Graph::template NodeMap<Length> PotentialMap;
       
    98     PotentialMap potential;
       
    99     
       
   100 
       
   101     Length total_length;
       
   102 
       
   103 
       
   104   public :
       
   105 
       
   106     /// The constructor of the class.
       
   107     
       
   108     ///\param _G The directed graph the algorithm runs on. 
       
   109     ///\param _length The length (weight or cost) of the edges. 
       
   110     ///\param _cap The capacity of the edges. 
       
   111     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
       
   112       length(_length), capacity(_cap), flow(_G), potential(_G){ }
       
   113 
       
   114     
       
   115     ///Runs the algorithm.
       
   116     
       
   117     ///Runs the algorithm.
       
   118     ///Returns k if there is a flow of value at least k edge-disjoint 
       
   119     ///from s to t.
       
   120     ///Otherwise it returns the maximum value of a flow from s to t.
       
   121     ///
       
   122     ///\param s The source node.
       
   123     ///\param t The target node.
       
   124     ///\param k The value of the flow we are looking for.
       
   125     ///
       
   126     ///\todo May be it does make sense to be able to start with a nonzero 
       
   127     /// feasible primal-dual solution pair as well.
       
   128     int run(Node s, Node t, int k) {
       
   129 
       
   130       //Resetting variables from previous runs
       
   131       total_length = 0;
       
   132       
       
   133       for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
       
   134 
       
   135       //Initialize the potential to zero
       
   136       for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
       
   137       
       
   138       
       
   139       //We need a residual graph
       
   140       ResGraphType res_graph(G, capacity, flow);
       
   141 
       
   142 
       
   143       ModLengthMap mod_length(res_graph, length, potential);
       
   144 
       
   145       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
       
   146 
       
   147       int i;
       
   148       for (i=0; i<k; ++i){
       
   149 	dijkstra.run(s);
       
   150 	if (!dijkstra.reached(t)){
       
   151 	  //There are no flow of value k from s to t
       
   152 	  break;
       
   153 	};
       
   154 	
       
   155 	//We have to change the potential
       
   156         for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n)
       
   157 	  potential[n] += dijkstra.distMap()[n];
       
   158 
       
   159 
       
   160 	//Augmenting on the sortest path
       
   161 	Node n=t;
       
   162 	ResGraphEdge e;
       
   163 	while (n!=s){
       
   164 	  e = dijkstra.pred(n);
       
   165 	  n = dijkstra.predNode(n);
       
   166 	  res_graph.augment(e,1);
       
   167 	  //Let's update the total length
       
   168 	  if (res_graph.forward(e))
       
   169 	    total_length += length[e];
       
   170 	  else 
       
   171 	    total_length -= length[e];	    
       
   172 	}
       
   173 
       
   174 	  
       
   175       }
       
   176       
       
   177 
       
   178       return i;
       
   179     }
       
   180 
       
   181 
       
   182 
       
   183     /// Gives back the total weight of the found flow.
       
   184 
       
   185     ///This function gives back the total weight of the found flow.
       
   186     ///Assumes that \c run() has been run and nothing changed since then.
       
   187     Length totalLength(){
       
   188       return total_length;
       
   189     }
       
   190 
       
   191     ///Returns a const reference to the EdgeMap \c flow. 
       
   192 
       
   193     ///Returns a const reference to the EdgeMap \c flow. 
       
   194     ///\pre \ref run() must
       
   195     ///be called before using this function.
       
   196     const EdgeIntMap &getFlow() const { return flow;}
       
   197 
       
   198     ///Returns a const reference to the NodeMap \c potential (the dual solution).
       
   199 
       
   200     ///Returns a const reference to the NodeMap \c potential (the dual solution).
       
   201     /// \pre \ref run() must be called before using this function.
       
   202     const PotentialMap &getPotential() const { return potential;}
       
   203 
       
   204     /// Checking the complementary slackness optimality criteria
       
   205 
       
   206     ///This function checks, whether the given solution is optimal
       
   207     ///If executed after the call of \c run() then it should return with true.
       
   208     ///This function only checks optimality, doesn't bother with feasibility.
       
   209     ///It is meant for testing purposes.
       
   210     ///
       
   211     bool checkComplementarySlackness(){
       
   212       Length mod_pot;
       
   213       Length fl_e;
       
   214         for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
       
   215 	//C^{\Pi}_{i,j}
       
   216 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
       
   217 	fl_e = flow[e];
       
   218 	if (0<fl_e && fl_e<capacity[e]) {
       
   219 	  /// \todo better comparison is needed for real types, moreover, 
       
   220 	  /// this comparison here is superfluous.
       
   221 	  if (mod_pot != 0)
       
   222 	    return false;
       
   223 	} 
       
   224 	else {
       
   225 	  if (mod_pot > 0 && fl_e != 0)
       
   226 	    return false;
       
   227 	  if (mod_pot < 0 && fl_e != capacity[e])
       
   228 	    return false;
       
   229 	}
       
   230       }
       
   231       return true;
       
   232     }
       
   233     
       
   234 
       
   235   }; //class MinCostFlows
       
   236 
       
   237   ///@}
       
   238 
       
   239 } //namespace hugo
       
   240 
       
   241 #endif //HUGO_MINCOSTFLOWS_H