lemon/graph_adaptor.h
changeset 1951 cb7a6e0573bc
parent 1949 5db4ff8d69de
child 1952 6150d1cf0825
equal deleted inserted replaced
19:3d7a489f8538 20:216ee418555f
    36 #include <lemon/bits/graph_extender.h>
    36 #include <lemon/bits/graph_extender.h>
    37 #include <iostream>
    37 #include <iostream>
    38 
    38 
    39 namespace lemon {
    39 namespace lemon {
    40 
    40 
    41   //x\brief Base type for the Graph Adaptors
    41   ///\brief Base type for the Graph Adaptors
    42   //x\ingroup graph_adaptors
    42   ///\ingroup graph_adaptors
    43   //x    
    43   ///
    44   //xBase type for the Graph Adaptors
    44   ///Base type for the Graph Adaptors
    45   //x    
    45   ///
    46   //x\warning Graph adaptors are in even
    46   ///\warning Graph adaptors are in even
    47   //xmore experimental state than the other
    47   ///more experimental state than the other
    48   //xparts of the lib. Use them at you own risk.
    48   ///parts of the lib. Use them at you own risk.
    49   //x
    49   ///
    50   //xThis is the base type for most of LEMON graph adaptors. 
    50   ///This is the base type for most of LEMON graph adaptors. 
    51   //xThis class implements a trivial graph adaptor i.e. it only wraps the 
    51   ///This class implements a trivial graph adaptor i.e. it only wraps the 
    52   //xfunctions and types of the graph. The purpose of this class is to 
    52   ///functions and types of the graph. The purpose of this class is to 
    53   //xmake easier implementing graph adaptors. E.g. if an adaptor is 
    53   ///make easier implementing graph adaptors. E.g. if an adaptor is 
    54   //xconsidered which differs from the wrapped graph only in some of its 
    54   ///considered which differs from the wrapped graph only in some of its 
    55   //xfunctions or types, then it can be derived from GraphAdaptor,
    55   ///functions or types, then it can be derived from GraphAdaptor,
    56   //xand only the 
    56   ///and only the 
    57   //xdifferences should be implemented.
    57   ///differences should be implemented.
    58   //x
    58   ///
    59   //xauthor Marton Makai 
    59   ///author Marton Makai 
    60   template<typename _Graph>
    60   template<typename _Graph>
    61   class GraphAdaptorBase {
    61   class GraphAdaptorBase {
    62   public:
    62   public:
    63     typedef _Graph Graph;
    63     typedef _Graph Graph;
    64     typedef Graph ParentGraph;
    64     typedef Graph ParentGraph;
   278       Parent::nextOut(i); 
   278       Parent::nextOut(i); 
   279       while (i!=INVALID && (!(*edge_filter_map)[i] 
   279       while (i!=INVALID && (!(*edge_filter_map)[i] 
   280 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   280 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   281     }
   281     }
   282 
   282 
   283     //x\e
   283     ///\e
   284 
   284 
   285     //x This function hides \c n in the graph, i.e. the iteration 
   285     /// This function hides \c n in the graph, i.e. the iteration 
   286     //x jumps over it. This is done by simply setting the value of \c n  
   286     /// jumps over it. This is done by simply setting the value of \c n  
   287     //x to be false in the corresponding node-map.
   287     /// to be false in the corresponding node-map.
   288     void hide(const Node& n) const { node_filter_map->set(n, false); }
   288     void hide(const Node& n) const { node_filter_map->set(n, false); }
   289 
   289 
   290     //x\e
   290     ///\e
   291 
   291 
   292     //x This function hides \c e in the graph, i.e. the iteration 
   292     /// This function hides \c e in the graph, i.e. the iteration 
   293     //x jumps over it. This is done by simply setting the value of \c e  
   293     /// jumps over it. This is done by simply setting the value of \c e  
   294     //x to be false in the corresponding edge-map.
   294     /// to be false in the corresponding edge-map.
   295     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   295     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   296 
   296 
   297     //x\e
   297     ///\e
   298 
   298 
   299     //x The value of \c n is set to be true in the node-map which stores 
   299     /// The value of \c n is set to be true in the node-map which stores 
   300     //x hide information. If \c n was hidden previuosly, then it is shown 
   300     /// hide information. If \c n was hidden previuosly, then it is shown 
   301     //x again
   301     /// again
   302      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   302      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   303 
   303 
   304     //x\e
   304     ///\e
   305 
   305 
   306     //x The value of \c e is set to be true in the edge-map which stores 
   306     /// The value of \c e is set to be true in the edge-map which stores 
   307     //x hide information. If \c e was hidden previuosly, then it is shown 
   307     /// hide information. If \c e was hidden previuosly, then it is shown 
   308     //x again
   308     /// again
   309     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   309     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   310 
   310 
   311     //x Returns true if \c n is hidden.
   311     /// Returns true if \c n is hidden.
   312     
   312     
   313     //x\e
   313     ///\e
   314     //x
   314     ///
   315     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   315     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   316 
   316 
   317     //x Returns true if \c n is hidden.
   317     /// Returns true if \c n is hidden.
   318     
   318     
   319     //x\e
   319     ///\e
   320     //x
   320     ///
   321     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   321     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   322 
   322 
   323     typedef False NodeNumTag;
   323     typedef False NodeNumTag;
   324     typedef False EdgeNumTag;
   324     typedef False EdgeNumTag;
   325   };
   325   };
   384     void nextOut(Edge& i) const { 
   384     void nextOut(Edge& i) const { 
   385       Parent::nextOut(i); 
   385       Parent::nextOut(i); 
   386       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   386       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   387     }
   387     }
   388 
   388 
   389     //x\e
   389     ///\e
   390 
   390 
   391     //x This function hides \c n in the graph, i.e. the iteration 
   391     /// This function hides \c n in the graph, i.e. the iteration 
   392     //x jumps over it. This is done by simply setting the value of \c n  
   392     /// jumps over it. This is done by simply setting the value of \c n  
   393     //x to be false in the corresponding node-map.
   393     /// to be false in the corresponding node-map.
   394     void hide(const Node& n) const { node_filter_map->set(n, false); }
   394     void hide(const Node& n) const { node_filter_map->set(n, false); }
   395 
   395 
   396     //x\e
   396     ///\e
   397 
   397 
   398     //x This function hides \c e in the graph, i.e. the iteration 
   398     /// This function hides \c e in the graph, i.e. the iteration 
   399     //x jumps over it. This is done by simply setting the value of \c e  
   399     /// jumps over it. This is done by simply setting the value of \c e  
   400     //x to be false in the corresponding edge-map.
   400     /// to be false in the corresponding edge-map.
   401     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   401     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   402 
   402 
   403     //x\e
   403     ///\e
   404 
   404 
   405     //x The value of \c n is set to be true in the node-map which stores 
   405     /// The value of \c n is set to be true in the node-map which stores 
   406     //x hide information. If \c n was hidden previuosly, then it is shown 
   406     /// hide information. If \c n was hidden previuosly, then it is shown 
   407     //x again
   407     /// again
   408      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   408      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   409 
   409 
   410     //x\e
   410     ///\e
   411 
   411 
   412     //x The value of \c e is set to be true in the edge-map which stores 
   412     /// The value of \c e is set to be true in the edge-map which stores 
   413     //x hide information. If \c e was hidden previuosly, then it is shown 
   413     /// hide information. If \c e was hidden previuosly, then it is shown 
   414     //x again
   414     /// again
   415     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   415     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   416 
   416 
   417     //x Returns true if \c n is hidden.
   417     /// Returns true if \c n is hidden.
   418     
   418     
   419     //x\e
   419     ///\e
   420     //x
   420     ///
   421     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   421     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   422 
   422 
   423     //x Returns true if \c n is hidden.
   423     /// Returns true if \c n is hidden.
   424     
   424     
   425     //x\e
   425     ///\e
   426     //x
   426     ///
   427     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   427     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   428 
   428 
   429     typedef False NodeNumTag;
   429     typedef False NodeNumTag;
   430     typedef False EdgeNumTag;
   430     typedef False EdgeNumTag;
   431   };
   431   };
   432 
   432 
   433   //x\brief A graph adaptor for hiding nodes and edges from a graph.
   433   /// \brief A graph adaptor for hiding nodes and edges from a graph.
   434   //x\ingroup graph_adaptors
   434   /// \ingroup graph_adaptors
   435   //x
   435   /// 
   436   //x\warning Graph adaptors are in even more experimental
   436   /// \warning Graph adaptors are in even more experimental state than the
   437   //xstate than the other
   437   /// other parts of the lib. Use them at you own risk.
   438   //xparts of the lib. Use them at you own risk.
   438   /// 
   439   //x
   439   /// SubGraphAdaptor shows the graph with filtered node-set and 
   440   //xSubGraphAdaptor shows the graph with filtered node-set and 
   440   /// edge-set. If the \c checked parameter is true then it filters the edgeset
   441   //xedge-set. If the \c checked parameter is true then it filters the edgeset
   441   /// to do not get invalid edges without source or target.
   442   //xto do not get invalid edges without source or target.
   442   /// Let  \f$  G=(V, A)  \f$  be a directed graph
   443   //xLet \f$G=(V, A)\f$ be a directed graph 
   443   /// and suppose that the graph instance \c g of type ListGraph
   444   //xand suppose that the graph instance \c g of type ListGraph implements 
   444   /// implements  \f$  G  \f$ .
   445   //x\f$G\f$. 
   445   /// Let moreover  \f$  b_V  \f$  and  \f$  b_A  \f$  be bool-valued functions resp.
   446   //x/Let moreover \f$b_V\f$ and 
   446   /// on the node-set and edge-set.
   447   //x\f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   447   /// SubGraphAdaptor<...>::NodeIt iterates 
   448   //xSubGraphAdaptor<...>::NodeIt iterates 
   448   /// on the node-set  \f$ \{v\in V : b_V(v)=true\} \f$  and 
   449   //xon the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   449   /// SubGraphAdaptor<...>::EdgeIt iterates 
   450   //xSubGraphAdaptor<...>::EdgeIt iterates 
   450   /// on the edge-set  \f$ \{e\in A : b_A(e)=true\} \f$ . Similarly, 
   451   //xon the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   451   /// SubGraphAdaptor<...>::OutEdgeIt and
   452   //xSubGraphAdaptor<...>::OutEdgeIt and
   452   /// SubGraphAdaptor<...>::InEdgeIt iterates 
   453   //xSubGraphAdaptor<...>::InEdgeIt iterates 
   453   /// only on edges leaving and entering a specific node which have true value.
   454   //xonly on edges leaving and entering a specific node which have true value.
   454   /// 
   455   //x
   455   /// If the \c checked template parameter is false then we have to note that 
   456   //xIf the \c checked template parameter is false then we have to note that 
   456   /// the node-iterator cares only the filter on the node-set, and the 
   457   //xthe node-iterator cares only the filter on the node-set, and the 
   457   /// edge-iterator cares only the filter on the edge-set.
   458   //xedge-iterator cares only the filter on the edge-set.
   458   /// This way the edge-map
   459   //xThis way the edge-map
   459   /// should filter all edges which's source or target is filtered by the 
   460   //xshould filter all edges which's source or target is filtered by the 
   460   /// node-filter.
   461   //xnode-filter.
   461   /// \code
   462   //x\code
   462   /// typedef ListGraph Graph;
   463   //xtypedef ListGraph Graph;
   463   /// Graph g;
   464   //xGraph g;
   464   /// typedef Graph::Node Node;
   465   //xtypedef Graph::Node Node;
   465   /// typedef Graph::Edge Edge;
   466   //xtypedef Graph::Edge Edge;
   466   /// Node u=g.addNode(); //node of id 0
   467   //xNode u=g.addNode(); //node of id 0
   467   /// Node v=g.addNode(); //node of id 1
   468   //xNode v=g.addNode(); //node of id 1
   468   /// Node e=g.addEdge(u, v); //edge of id 0
   469   //xNode e=g.addEdge(u, v); //edge of id 0
   469   /// Node f=g.addEdge(v, u); //edge of id 1
   470   //xNode f=g.addEdge(v, u); //edge of id 1
   470   /// Graph::NodeMap<bool> nm(g, true);
   471   //xGraph::NodeMap<bool> nm(g, true);
   471   /// nm.set(u, false);
   472   //xnm.set(u, false);
   472   /// Graph::EdgeMap<bool> em(g, true);
   473   //xGraph::EdgeMap<bool> em(g, true);
   473   /// em.set(e, false);
   474   //xem.set(e, false);
   474   /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   475   //xtypedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   475   /// SubGW gw(g, nm, em);
   476   //xSubGW gw(g, nm, em);
   476   /// for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   477   //xfor (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   477   /// std::cout << ":-)" << std::endl;
   478   //xstd::cout << ":-)" << std::endl;
   478   /// for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   479   //xfor (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   479   /// \endcode
   480   //x\endcode
   480   /// The output of the above code is the following.
   481   //xThe output of the above code is the following.
   481   /// \code
   482   //x\code
   482   /// 1
   483   //x1
   483   /// :-)
   484   //x:-)
   484   /// 1
   485   //x1
   485   /// \endcode
   486   //x\endcode
   486   /// Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   487   //xNote that \c n is of type \c SubGW::NodeIt, but it can be converted to
   487   /// \c Graph::Node that is why \c g.id(n) can be applied.
   488   //x\c Graph::Node that is why \c g.id(n) can be applied.
   488   /// 
   489   //x
   489   /// For other examples see also the documentation of NodeSubGraphAdaptor and 
   490   //xFor other examples see also the documentation of NodeSubGraphAdaptor and 
   490   /// EdgeSubGraphAdaptor.
   491   //xEdgeSubGraphAdaptor.
   491   /// 
   492   //x
   492   /// \author Marton Makai
   493   //x\author Marton Makai
       
   494 
   493 
   495   template<typename _Graph, typename NodeFilterMap, 
   494   template<typename _Graph, typename NodeFilterMap, 
   496 	   typename EdgeFilterMap, bool checked = true>
   495 	   typename EdgeFilterMap, bool checked = true>
   497   class SubGraphAdaptor : 
   496   class SubGraphAdaptor : 
   498     public IterableGraphExtender<
   497     public IterableGraphExtender<
   512     }
   511     }
   513   };
   512   };
   514 
   513 
   515 
   514 
   516 
   515 
   517   //x\brief An adaptor for hiding nodes from a graph.
   516   ///\brief An adaptor for hiding nodes from a graph.
   518   //x\ingroup graph_adaptors
   517   ///\ingroup graph_adaptors
   519   //x
   518   ///
   520   //x\warning Graph adaptors are in even more experimental state
   519   ///\warning Graph adaptors are in even more experimental state
   521   //xthan the other
   520   ///than the other
   522   //xparts of the lib. Use them at you own risk.
   521   ///parts of the lib. Use them at you own risk.
   523   //x
   522   ///
   524   //xAn adaptor for hiding nodes from a graph.
   523   ///An adaptor for hiding nodes from a graph.
   525   //xThis adaptor specializes SubGraphAdaptor in the way that only
   524   ///This adaptor specializes SubGraphAdaptor in the way that only
   526   //xthe node-set 
   525   ///the node-set 
   527   //xcan be filtered. In usual case the checked parameter is true, we get the
   526   ///can be filtered. In usual case the checked parameter is true, we get the
   528   //xinduced subgraph. But if the checked parameter is false then we can only
   527   ///induced subgraph. But if the checked parameter is false then we can only
   529   //xfilter only isolated nodes.
   528   ///filter only isolated nodes.
   530   //x\author Marton Makai
   529   ///\author Marton Makai
   531   template<typename Graph, typename NodeFilterMap, bool checked = true>
   530   template<typename Graph, typename NodeFilterMap, bool checked = true>
   532   class NodeSubGraphAdaptor : 
   531   class NodeSubGraphAdaptor : 
   533     public SubGraphAdaptor<Graph, NodeFilterMap, 
   532     public SubGraphAdaptor<Graph, NodeFilterMap, 
   534 			   ConstMap<typename Graph::Edge,bool>, checked> {
   533 			   ConstMap<typename Graph::Edge,bool>, checked> {
   535   public:
   534   public:
   545       Parent::setEdgeFilterMap(const_true_map);
   544       Parent::setEdgeFilterMap(const_true_map);
   546     }
   545     }
   547   };
   546   };
   548 
   547 
   549 
   548 
   550   //x\brief An adaptor for hiding edges from a graph.
   549   ///\brief An adaptor for hiding edges from a graph.
   551   //x
   550   ///
   552   //x\warning Graph adaptors are in even more experimental state
   551   ///\warning Graph adaptors are in even more experimental state
   553   //xthan the other parts of the lib. Use them at you own risk.
   552   ///than the other parts of the lib. Use them at you own risk.
   554   //x
   553   ///
   555   //xAn adaptor for hiding edges from a graph.
   554   ///An adaptor for hiding edges from a graph.
   556   //xThis adaptor specializes SubGraphAdaptor in the way that
   555   ///This adaptor specializes SubGraphAdaptor in the way that
   557   //xonly the edge-set 
   556   ///only the edge-set 
   558   //xcan be filtered. The usefulness of this adaptor is demonstrated in the 
   557   ///can be filtered. The usefulness of this adaptor is demonstrated in the 
   559   //xproblem of searching a maximum number of edge-disjoint shortest paths 
   558   ///problem of searching a maximum number of edge-disjoint shortest paths 
   560   //xbetween 
   559   ///between 
   561   //xtwo nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   560   ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   562   //xnon-negative edge-lengths. Note that 
   561   ///non-negative edge-lengths. Note that 
   563   //xthe comprehension of the presented solution 
   562   ///the comprehension of the presented solution 
   564   //xneed's some elementary knowledge from combinatorial optimization. 
   563   ///need's some elementary knowledge from combinatorial optimization. 
   565   //x
   564   ///
   566   //xIf a single shortest path is to be 
   565   ///If a single shortest path is to be 
   567   //xsearched between \c s and \c t, then this can be done easily by 
   566   ///searched between \c s and \c t, then this can be done easily by 
   568   //xapplying the Dijkstra algorithm. What happens, if a maximum number of 
   567   ///applying the Dijkstra algorithm. What happens, if a maximum number of 
   569   //xedge-disjoint shortest paths is to be computed. It can be proved that an 
   568   ///edge-disjoint shortest paths is to be computed. It can be proved that an 
   570   //xedge can be in a shortest path if and only
   569   ///edge can be in a shortest path if and only
   571   //xif it is tight with respect to 
   570   ///if it is tight with respect to 
   572   //xthe potential function computed by Dijkstra.
   571   ///the potential function computed by Dijkstra.
   573   //xMoreover, any path containing 
   572   ///Moreover, any path containing 
   574   //xonly such edges is a shortest one.
   573   ///only such edges is a shortest one.
   575   //xThus we have to compute a maximum number 
   574   ///Thus we have to compute a maximum number 
   576   //xof edge-disjoint paths between \c s and \c t in
   575   ///of edge-disjoint paths between \c s and \c t in
   577   //xthe graph which has edge-set 
   576   ///the graph which has edge-set 
   578   //xall the tight edges. The computation will be demonstrated
   577   ///all the tight edges. The computation will be demonstrated
   579   //xon the following 
   578   ///on the following 
   580   //xgraph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   579   ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   581   //xThe full source code is available in \ref sub_graph_adaptor_demo.cc. 
   580   ///The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   582   //xIf you are interested in more demo programs, you can use 
   581   ///If you are interested in more demo programs, you can use 
   583   //x\ref dim_to_dot.cc to generate .dot files from dimacs files. 
   582   ///\ref dim_to_dot.cc to generate .dot files from dimacs files. 
   584   //xThe .dot file of the following figure was generated by  
   583   ///The .dot file of the following figure was generated by  
   585   //xthe demo program \ref dim_to_dot.cc.
   584   ///the demo program \ref dim_to_dot.cc.
   586   //x
   585   ///
   587   //x\dot
   586   ///\dot
   588   //xdigraph lemon_dot_example {
   587   ///digraph lemon_dot_example {
   589   //xnode [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   588   ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   590   //xn0 [ label="0 (s)" ];
   589   ///n0 [ label="0 (s)" ];
   591   //xn1 [ label="1" ];
   590   ///n1 [ label="1" ];
   592   //xn2 [ label="2" ];
   591   ///n2 [ label="2" ];
   593   //xn3 [ label="3" ];
   592   ///n3 [ label="3" ];
   594   //xn4 [ label="4" ];
   593   ///n4 [ label="4" ];
   595   //xn5 [ label="5" ];
   594   ///n5 [ label="5" ];
   596   //xn6 [ label="6 (t)" ];
   595   ///n6 [ label="6 (t)" ];
   597   //xedge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   596   ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   598   //xn5 ->  n6 [ label="9, length:4" ];
   597   ///n5 ->  n6 [ label="9, length:4" ];
   599   //xn4 ->  n6 [ label="8, length:2" ];
   598   ///n4 ->  n6 [ label="8, length:2" ];
   600   //xn3 ->  n5 [ label="7, length:1" ];
   599   ///n3 ->  n5 [ label="7, length:1" ];
   601   //xn2 ->  n5 [ label="6, length:3" ];
   600   ///n2 ->  n5 [ label="6, length:3" ];
   602   //xn2 ->  n6 [ label="5, length:5" ];
   601   ///n2 ->  n6 [ label="5, length:5" ];
   603   //xn2 ->  n4 [ label="4, length:2" ];
   602   ///n2 ->  n4 [ label="4, length:2" ];
   604   //xn1 ->  n4 [ label="3, length:3" ];
   603   ///n1 ->  n4 [ label="3, length:3" ];
   605   //xn0 ->  n3 [ label="2, length:1" ];
   604   ///n0 ->  n3 [ label="2, length:1" ];
   606   //xn0 ->  n2 [ label="1, length:2" ];
   605   ///n0 ->  n2 [ label="1, length:2" ];
   607   //xn0 ->  n1 [ label="0, length:3" ];
   606   ///n0 ->  n1 [ label="0, length:3" ];
   608   //x}
   607   ///}
   609   //x\enddot
   608   ///\enddot
   610   //x
   609   ///
   611   //x\code
   610   ///\code
   612   //xGraph g;
   611   ///Graph g;
   613   //xNode s, t;
   612   ///Node s, t;
   614   //xLengthMap length(g);
   613   ///LengthMap length(g);
   615   //x
   614   ///
   616   //xreadDimacs(std::cin, g, length, s, t);
   615   ///readDimacs(std::cin, g, length, s, t);
   617   //x
   616   ///
   618   //xcout << "edges with lengths (of form id, source--length->target): " << endl;
   617   ///cout << "edges with lengths (of form id, source--length->target): " << endl;
   619   //xfor(EdgeIt e(g); e!=INVALID; ++e) 
   618   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   620   //x  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   619   ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   621   //x       << length[e] << "->" << g.id(g.target(e)) << endl;
   620   ///       << length[e] << "->" << g.id(g.target(e)) << endl;
   622   //x
   621   ///
   623   //xcout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   622   ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   624   //x\endcode
   623   ///\endcode
   625   //xNext, the potential function is computed with Dijkstra.
   624   ///Next, the potential function is computed with Dijkstra.
   626   //x\code
   625   ///\code
   627   //xtypedef Dijkstra<Graph, LengthMap> Dijkstra;
   626   ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
   628   //xDijkstra dijkstra(g, length);
   627   ///Dijkstra dijkstra(g, length);
   629   //xdijkstra.run(s);
   628   ///dijkstra.run(s);
   630   //x\endcode
   629   ///\endcode
   631   //xNext, we consrtruct a map which filters the edge-set to the tight edges.
   630   ///Next, we consrtruct a map which filters the edge-set to the tight edges.
   632   //x\code
   631   ///\code
   633   //xtypedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   632   ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   634   //x  TightEdgeFilter;
   633   ///  TightEdgeFilter;
   635   //xTightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   634   ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   636   //x
   635   ///
   637   //xtypedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   636   ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   638   //xSubGW gw(g, tight_edge_filter);
   637   ///SubGW gw(g, tight_edge_filter);
   639   //x\endcode
   638   ///\endcode
   640   //xThen, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   639   ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   641   //xwith a max flow algorithm Preflow.
   640   ///with a max flow algorithm Preflow.
   642   //x\code
   641   ///\code
   643   //xConstMap<Edge, int> const_1_map(1);
   642   ///ConstMap<Edge, int> const_1_map(1);
   644   //xGraph::EdgeMap<int> flow(g, 0);
   643   ///Graph::EdgeMap<int> flow(g, 0);
   645   //x
   644   ///
   646   //xPreflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   645   ///Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   647   //x  preflow(gw, s, t, const_1_map, flow);
   646   ///  preflow(gw, s, t, const_1_map, flow);
   648   //xpreflow.run();
   647   ///preflow.run();
   649   //x\endcode
   648   ///\endcode
   650   //xLast, the output is:
   649   ///Last, the output is:
   651   //x\code  
   650   ///\code  
   652   //xcout << "maximum number of edge-disjoint shortest path: " 
   651   ///cout << "maximum number of edge-disjoint shortest path: " 
   653   //x     << preflow.flowValue() << endl;
   652   ///     << preflow.flowValue() << endl;
   654   //xcout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   653   ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   655   //x     << endl;
   654   ///     << endl;
   656   //xfor(EdgeIt e(g); e!=INVALID; ++e) 
   655   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   657   //x  if (flow[e])
   656   ///  if (flow[e])
   658   //x    cout << " " << g.id(g.source(e)) << "--"
   657   ///    cout << " " << g.id(g.source(e)) << "--"
   659   //x         << length[e] << "->" << g.id(g.target(e)) << endl;
   658   ///         << length[e] << "->" << g.id(g.target(e)) << endl;
   660   //x\endcode
   659   ///\endcode
   661   //xThe program has the following (expected :-)) output:
   660   ///The program has the following (expected :-)) output:
   662   //x\code
   661   ///\code
   663   //xedges with lengths (of form id, source--length->target):
   662   ///edges with lengths (of form id, source--length->target):
   664   //x 9, 5--4->6
   663   /// 9, 5--4->6
   665   //x 8, 4--2->6
   664   /// 8, 4--2->6
   666   //x 7, 3--1->5
   665   /// 7, 3--1->5
   667   //x 6, 2--3->5
   666   /// 6, 2--3->5
   668   //x 5, 2--5->6
   667   /// 5, 2--5->6
   669   //x 4, 2--2->4
   668   /// 4, 2--2->4
   670   //x 3, 1--3->4
   669   /// 3, 1--3->4
   671   //x 2, 0--1->3
   670   /// 2, 0--1->3
   672   //x 1, 0--2->2
   671   /// 1, 0--2->2
   673   //x 0, 0--3->1
   672   /// 0, 0--3->1
   674   //xs: 0 t: 6
   673   ///s: 0 t: 6
   675   //xmaximum number of edge-disjoint shortest path: 2
   674   ///maximum number of edge-disjoint shortest path: 2
   676   //xedges of the maximum number of edge-disjoint shortest s-t paths:
   675   ///edges of the maximum number of edge-disjoint shortest s-t paths:
   677   //x 9, 5--4->6
   676   /// 9, 5--4->6
   678   //x 8, 4--2->6
   677   /// 8, 4--2->6
   679   //x 7, 3--1->5
   678   /// 7, 3--1->5
   680   //x 4, 2--2->4
   679   /// 4, 2--2->4
   681   //x 2, 0--1->3
   680   /// 2, 0--1->3
   682   //x 1, 0--2->2
   681   /// 1, 0--2->2
   683   //x\endcode
   682   ///\endcode
   684   //x
   683   ///
   685   //x\author Marton Makai
   684   ///\author Marton Makai
   686   template<typename Graph, typename EdgeFilterMap>
   685   template<typename Graph, typename EdgeFilterMap>
   687   class EdgeSubGraphAdaptor : 
   686   class EdgeSubGraphAdaptor : 
   688     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   687     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   689 			   EdgeFilterMap, false> {
   688 			   EdgeFilterMap, false> {
   690   public:
   689   public:
   767       }
   766       }
   768     };
   767     };
   769       
   768       
   770   };
   769   };
   771 
   770 
   772   //x\brief An undirected graph is made from a directed graph by an adaptor
   771   ///\brief An undirected graph is made from a directed graph by an adaptor
   773   //x\ingroup graph_adaptors
   772   ///\ingroup graph_adaptors
   774   //x
   773   ///
   775   //x Undocumented, untested!!!
   774   /// Undocumented, untested!!!
   776   //x If somebody knows nice demo application, let's polulate it.
   775   /// If somebody knows nice demo application, let's polulate it.
   777   //x 
   776   /// 
   778   //x \author Marton Makai
   777   /// \author Marton Makai
   779   template<typename _Graph>
   778   template<typename _Graph>
   780   class UGraphAdaptor : 
   779   class UGraphAdaptor : 
   781     public IterableUGraphExtender<
   780     public IterableUGraphExtender<
   782     UGraphAdaptorBase<_Graph> > {
   781     UGraphAdaptorBase<_Graph> > {
   783   public:
   782   public:
   959     Node source(Edge e) const { 
   958     Node source(Edge e) const { 
   960       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   959       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   961     Node target(Edge e) const { 
   960     Node target(Edge e) const { 
   962       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   961       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   963 
   962 
   964     //x Gives back the opposite edge.
   963     /// Gives back the opposite edge.
   965 
   964 
   966     //x\e
   965     ///\e
   967     //x
   966     ///
   968     Edge opposite(const Edge& e) const { 
   967     Edge opposite(const Edge& e) const { 
   969       Edge f=e;
   968       Edge f=e;
   970       f.backward=!f.backward;
   969       f.backward=!f.backward;
   971       return f;
   970       return f;
   972     }
   971     }
   973 
   972 
   974     //x\e
   973     ///\e
   975 
   974 
   976     //x \warning This is a linear time operation and works only if 
   975     /// \warning This is a linear time operation and works only if 
   977     //x \c Graph::EdgeIt is defined.
   976     /// \c Graph::EdgeIt is defined.
   978     //x \todo hmm
   977     /// \todo hmm
   979     int edgeNum() const { 
   978     int edgeNum() const { 
   980       int i=0;
   979       int i=0;
   981       Edge e;
   980       Edge e;
   982       for (first(e); e!=INVALID; next(e)) ++i;
   981       for (first(e); e!=INVALID; next(e)) ++i;
   983       return i; 
   982       return i; 
   984     }
   983     }
   985 
   984 
   986     bool forward(const Edge& e) const { return !e.backward; }
   985     bool forward(const Edge& e) const { return !e.backward; }
   987     bool backward(const Edge& e) const { return e.backward; }
   986     bool backward(const Edge& e) const { return e.backward; }
   988 
   987 
   989     //x\e
   988     ///\e
   990 
   989 
   991     //x \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   990     /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   992     //x _Graph::EdgeMap one for the forward edges and 
   991     /// _Graph::EdgeMap one for the forward edges and 
   993     //x one for the backward edges.
   992     /// one for the backward edges.
   994     template <typename T>
   993     template <typename T>
   995     class EdgeMap {
   994     class EdgeMap {
   996       template <typename TT> friend class EdgeMap;
   995       template <typename TT> friend class EdgeMap;
   997       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   996       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   998     public:
   997     public:
  1037     };
  1036     };
  1038 
  1037 
  1039   };
  1038   };
  1040 
  1039 
  1041 
  1040 
  1042   //x\brief An adaptor for composing a subgraph of a 
  1041   ///\brief An adaptor for composing a subgraph of a 
  1043   //x bidirected graph made from a directed one. 
  1042   /// bidirected graph made from a directed one. 
  1044   //x\ingroup graph_adaptors
  1043   ///\ingroup graph_adaptors
  1045   //x
  1044   ///
  1046   //x An adaptor for composing a subgraph of a 
  1045   /// An adaptor for composing a subgraph of a 
  1047   //x bidirected graph made from a directed one. 
  1046   /// bidirected graph made from a directed one. 
  1048   //x
  1047   ///
  1049   //x\warning Graph adaptors are in even more experimental state
  1048   ///\warning Graph adaptors are in even more experimental state
  1050   //xthan the other
  1049   ///than the other
  1051   //xparts of the lib. Use them at you own risk.
  1050   ///parts of the lib. Use them at you own risk.
  1052   //x
  1051   ///
  1053   //x Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
  1052   /// Let  \f$  G=(V, A)  \f$  be a directed graph and for each directed edge 
  1054   //x \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
  1053   ///  \f$  e\in A  \f$ , let  \f$  \bar e  \f$  denote the edge obtained by
  1055   //x reversing its orientation. We are given moreover two bool valued 
  1054   /// reversing its orientation. We are given moreover two bool valued 
  1056   //x maps on the edge-set, 
  1055   /// maps on the edge-set, 
  1057   //x \f$forward\_filter\f$, and \f$backward\_filter\f$. 
  1056   ///  \f$  forward\_filter  \f$ , and  \f$  backward\_filter  \f$ . 
  1058   //x SubBidirGraphAdaptor implements the graph structure with node-set 
  1057   /// SubBidirGraphAdaptor implements the graph structure with node-set 
  1059   //x \f$V\f$ and edge-set 
  1058   ///  \f$  V  \f$  and edge-set 
  1060   //x \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
  1059   ///  \f$  \{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}  \f$ . 
  1061   //x The purpose of writing + instead of union is because parallel 
  1060   /// The purpose of writing + instead of union is because parallel 
  1062   //x edges can arise. (Similarly, antiparallel edges also can arise).
  1061   /// edges can arise. (Similarly, antiparallel edges also can arise).
  1063   //x In other words, a subgraph of the bidirected graph obtained, which 
  1062   /// In other words, a subgraph of the bidirected graph obtained, which 
  1064   //x is given by orienting the edges of the original graph in both directions.
  1063   /// is given by orienting the edges of the original graph in both directions.
  1065   //x As the oppositely directed edges are logically different, 
  1064   /// As the oppositely directed edges are logically different, 
  1066   //x the maps are able to attach different values for them. 
  1065   /// the maps are able to attach different values for them. 
  1067   //x
  1066   ///
  1068   //x An example for such a construction is \c RevGraphAdaptor where the 
  1067   /// An example for such a construction is \c RevGraphAdaptor where the 
  1069   //x forward_filter is everywhere false and the backward_filter is 
  1068   /// forward_filter is everywhere false and the backward_filter is 
  1070   //x everywhere true. We note that for sake of efficiency, 
  1069   /// everywhere true. We note that for sake of efficiency, 
  1071   //x \c RevGraphAdaptor is implemented in a different way. 
  1070   /// \c RevGraphAdaptor is implemented in a different way. 
  1072   //x But BidirGraphAdaptor is obtained from 
  1071   /// But BidirGraphAdaptor is obtained from 
  1073   //x SubBidirGraphAdaptor by considering everywhere true 
  1072   /// SubBidirGraphAdaptor by considering everywhere true 
  1074   //x valued maps both for forward_filter and backward_filter. 
  1073   /// valued maps both for forward_filter and backward_filter. 
  1075   //x
  1074   ///
  1076   //x The most important application of SubBidirGraphAdaptor 
  1075   /// The most important application of SubBidirGraphAdaptor 
  1077   //x is ResGraphAdaptor, which stands for the residual graph in directed 
  1076   /// is ResGraphAdaptor, which stands for the residual graph in directed 
  1078   //x flow and circulation problems. 
  1077   /// flow and circulation problems. 
  1079   //x As adaptors usually, the SubBidirGraphAdaptor implements the 
  1078   /// As adaptors usually, the SubBidirGraphAdaptor implements the 
  1080   //x above mentioned graph structure without its physical storage, 
  1079   /// above mentioned graph structure without its physical storage, 
  1081   //x that is the whole stuff is stored in constant memory. 
  1080   /// that is the whole stuff is stored in constant memory. 
  1082   template<typename _Graph, 
  1081   template<typename _Graph, 
  1083 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1082 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1084   class SubBidirGraphAdaptor : 
  1083   class SubBidirGraphAdaptor : 
  1085     public IterableGraphExtender<
  1084     public IterableGraphExtender<
  1086     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1085     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1100     }
  1099     }
  1101   };
  1100   };
  1102 
  1101 
  1103 
  1102 
  1104 
  1103 
  1105   //x\brief An adaptor for composing bidirected graph from a directed one. 
  1104   ///\brief An adaptor for composing bidirected graph from a directed one. 
  1106   //x\ingroup graph_adaptors
  1105   ///\ingroup graph_adaptors
  1107   //x
  1106   ///
  1108   //x\warning Graph adaptors are in even more experimental state
  1107   ///\warning Graph adaptors are in even more experimental state
  1109   //xthan the other
  1108   ///than the other
  1110   //xparts of the lib. Use them at you own risk.
  1109   ///parts of the lib. Use them at you own risk.
  1111   //x
  1110   ///
  1112   //x An adaptor for composing bidirected graph from a directed one. 
  1111   /// An adaptor for composing bidirected graph from a directed one. 
  1113   //x A bidirected graph is composed over the directed one without physical 
  1112   /// A bidirected graph is composed over the directed one without physical 
  1114   //x storage. As the oppositely directed edges are logically different ones 
  1113   /// storage. As the oppositely directed edges are logically different ones 
  1115   //x the maps are able to attach different values for them.
  1114   /// the maps are able to attach different values for them.
  1116   template<typename Graph>
  1115   template<typename Graph>
  1117   class BidirGraphAdaptor : 
  1116   class BidirGraphAdaptor : 
  1118     public SubBidirGraphAdaptor<
  1117     public SubBidirGraphAdaptor<
  1119     Graph, 
  1118     Graph, 
  1120     ConstMap<typename Graph::Edge, bool>, 
  1119     ConstMap<typename Graph::Edge, bool>, 
  1178       return (Number(0) < Number((*flow)[e]));
  1177       return (Number(0) < Number((*flow)[e]));
  1179     }
  1178     }
  1180   };
  1179   };
  1181 
  1180 
  1182   
  1181   
  1183   //x\brief An adaptor for composing the residual
  1182   ///\brief An adaptor for composing the residual
  1184   //xgraph for directed flow and circulation problems.
  1183   ///graph for directed flow and circulation problems.
  1185   //x\ingroup graph_adaptors
  1184   ///\ingroup graph_adaptors
  1186   //x
  1185   ///
  1187   //xAn adaptor for composing the residual graph for
  1186   ///An adaptor for composing the residual graph for
  1188   //xdirected flow and circulation problems. 
  1187   ///directed flow and circulation problems. 
  1189   //xLet \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1188   ///Let  \f$ G=(V, A) \f$  be a directed graph and let  \f$ F \f$  be a 
  1190   //xnumber type. Let moreover 
  1189   ///number type. Let moreover 
  1191   //x\f$f,c:A\to F\f$, be functions on the edge-set. 
  1190   /// \f$ f,c:A\to F \f$ , be functions on the edge-set. 
  1192   //xIn the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
  1191   ///In the appications of ResGraphAdaptor,  \f$ f \f$  usually stands for a flow 
  1193   //xand \f$c\f$ for a capacity function.   
  1192   ///and  \f$ c \f$  for a capacity function.   
  1194   //xSuppose that a graph instange \c g of type 
  1193   ///Suppose that a graph instange \c g of type 
  1195   //x\c ListGraph implements \f$G\f$ .
  1194   ///\c ListGraph implements  \f$ G \f$  .
  1196   //x\code
  1195   ///\code
  1197   //x  ListGraph g;
  1196   ///  ListGraph g;
  1198   //x\endcode
  1197   ///\endcode
  1199   //xThen RevGraphAdaptor implements the graph structure with node-set 
  1198   ///Then RevGraphAdaptor implements the graph structure with node-set 
  1200   //x\f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1199   /// \f$ V \f$  and edge-set  \f$ A_{forward}\cup A_{backward} \f$ , where 
  1201   //x\f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1200   /// \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$  and 
  1202   //x\f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1201   /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$ , 
  1203   //xi.e. the so called residual graph. 
  1202   ///i.e. the so called residual graph. 
  1204   //xWhen we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1203   ///When we take the union  \f$ A_{forward}\cup A_{backward} \f$ , 
  1205   //xmultilicities are counted, i.e. if an edge is in both 
  1204   ///multilicities are counted, i.e. if an edge is in both 
  1206   //x\f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
  1205   /// \f$ A_{forward} \f$  and  \f$ A_{backward} \f$ , then in the adaptor it 
  1207   //xappears twice. 
  1206   ///appears twice. 
  1208   //xThe following code shows how 
  1207   ///The following code shows how 
  1209   //xsuch an instance can be constructed.
  1208   ///such an instance can be constructed.
  1210   //x\code
  1209   ///\code
  1211   //xtypedef ListGraph Graph;
  1210   ///typedef ListGraph Graph;
  1212   //xGraph::EdgeMap<int> f(g);
  1211   ///Graph::EdgeMap<int> f(g);
  1213   //xGraph::EdgeMap<int> c(g);
  1212   ///Graph::EdgeMap<int> c(g);
  1214   //xResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1213   ///ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1215   //x\endcode
  1214   ///\endcode
  1216   //x\author Marton Makai
  1215   ///\author Marton Makai
  1217   //x
  1216   ///
  1218   template<typename Graph, typename Number, 
  1217   template<typename Graph, typename Number, 
  1219 	   typename CapacityMap, typename FlowMap>
  1218 	   typename CapacityMap, typename FlowMap>
  1220   class ResGraphAdaptor : 
  1219   class ResGraphAdaptor : 
  1221     public SubBidirGraphAdaptor< 
  1220     public SubBidirGraphAdaptor< 
  1222     Graph, 
  1221     Graph, 
  1262 	flow->set(e, (*flow)[e]+a);
  1261 	flow->set(e, (*flow)[e]+a);
  1263       else  
  1262       else  
  1264 	flow->set(e, (*flow)[e]-a);
  1263 	flow->set(e, (*flow)[e]-a);
  1265     }
  1264     }
  1266 
  1265 
  1267     //x \brief Residual capacity map.
  1266     /// \brief Residual capacity map.
  1268     //x
  1267     ///
  1269     //x In generic residual graphs the residual capacity can be obtained 
  1268     /// In generic residual graphs the residual capacity can be obtained 
  1270     //x as a map. 
  1269     /// as a map. 
  1271     class ResCap {
  1270     class ResCap {
  1272     protected:
  1271     protected:
  1273       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1272       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1274     public:
  1273     public:
  1275       typedef Number Value;
  1274       typedef Number Value;
  1319       first_out_edges->set(n, f);
  1318       first_out_edges->set(n, f);
  1320     }    
  1319     }    
  1321   };
  1320   };
  1322 
  1321 
  1323 
  1322 
  1324   //x\brief For blocking flows.
  1323   ///\brief For blocking flows.
  1325   //x\ingroup graph_adaptors
  1324   ///\ingroup graph_adaptors
  1326   //x
  1325   ///
  1327   //x\warning Graph adaptors are in even more
  1326   ///\warning Graph adaptors are in even more
  1328   //xexperimental state than the other
  1327   ///experimental state than the other
  1329   //xparts of the lib. Use them at you own risk.
  1328   ///parts of the lib. Use them at you own risk.
  1330   //x
  1329   ///
  1331   //xThis graph adaptor is used for on-the-fly 
  1330   ///This graph adaptor is used for on-the-fly 
  1332   //xDinits blocking flow computations.
  1331   ///Dinits blocking flow computations.
  1333   //xFor each node, an out-edge is stored which is used when the 
  1332   ///For each node, an out-edge is stored which is used when the 
  1334   //x\code
  1333   ///\code
  1335   //xOutEdgeIt& first(OutEdgeIt&, const Node&)
  1334   ///OutEdgeIt& first(OutEdgeIt&, const Node&)
  1336   //x\endcode
  1335   ///\endcode
  1337   //xis called. 
  1336   ///is called. 
  1338   //x
  1337   ///
  1339   //x\author Marton Makai
  1338   ///\author Marton Makai
  1340   //x
  1339   ///
  1341   template <typename _Graph, typename FirstOutEdgesMap>
  1340   template <typename _Graph, typename FirstOutEdgesMap>
  1342   class ErasingFirstGraphAdaptor : 
  1341   class ErasingFirstGraphAdaptor : 
  1343     public IterableGraphExtender<
  1342     public IterableGraphExtender<
  1344     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1343     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1345   public:
  1344   public:
  1392 	return NodeParent::operator<(node) || 
  1391 	return NodeParent::operator<(node) || 
  1393 	  (NodeParent::operator==(node) && entry < node.entry);
  1392 	  (NodeParent::operator==(node) && entry < node.entry);
  1394       }
  1393       }
  1395     };
  1394     };
  1396 
  1395 
  1397     //x \todo May we want VARIANT/union type
  1396     /// \todo May we want VARIANT/union type
  1398     class Edge : public Parent::Edge {
  1397     class Edge : public Parent::Edge {
  1399       friend class SplitGraphAdaptorBase;
  1398       friend class SplitGraphAdaptorBase;
  1400       template <typename T> friend class EdgeMap;
  1399       template <typename T> friend class EdgeMap;
  1401     private:
  1400     private:
  1402       typedef typename Parent::Edge EdgeParent;
  1401       typedef typename Parent::Edge EdgeParent;