lemon/goldberg_tarjan.h
changeset 2517 d9cfac072869
child 2518 4c0a23bd70b5
equal deleted inserted replaced
-1:000000000000 0:be174664b4a0
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2007
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_GOLDBERG_TARJAN_H
       
    20 #define LEMON_GOLDBERG_TARJAN_H
       
    21 
       
    22 #include <vector>
       
    23 #include <queue>
       
    24 
       
    25 #include <lemon/error.h>
       
    26 #include <lemon/bits/invalid.h>
       
    27 #include <lemon/tolerance.h>
       
    28 #include <lemon/maps.h>
       
    29 #include <lemon/graph_utils.h>
       
    30 #include <lemon/dynamic_tree.h>
       
    31 #include <limits>
       
    32 
       
    33 /// \file
       
    34 /// \ingroup max_flow
       
    35 /// \brief Implementation of the preflow algorithm.
       
    36 
       
    37 namespace lemon {
       
    38 
       
    39   /// \brief Default traits class of GoldbergTarjan class.
       
    40   ///
       
    41   /// Default traits class of GoldbergTarjan class.
       
    42   /// \param _Graph Graph type.
       
    43   /// \param _CapacityMap Type of capacity map.
       
    44   template <typename _Graph, typename _CapacityMap>
       
    45   struct GoldbergTarjanDefaultTraits {
       
    46 
       
    47     /// \brief The graph type the algorithm runs on. 
       
    48     typedef _Graph Graph;
       
    49 
       
    50     /// \brief The type of the map that stores the edge capacities.
       
    51     ///
       
    52     /// The type of the map that stores the edge capacities.
       
    53     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
       
    54     typedef _CapacityMap CapacityMap;
       
    55 
       
    56     /// \brief The type of the length of the edges.
       
    57     typedef typename CapacityMap::Value Value;
       
    58 
       
    59     /// \brief The map type that stores the flow values.
       
    60     ///
       
    61     /// The map type that stores the flow values. 
       
    62     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
       
    63     typedef typename Graph::template EdgeMap<Value> FlowMap;
       
    64 
       
    65     /// \brief Instantiates a FlowMap.
       
    66     ///
       
    67     /// This function instantiates a \ref FlowMap. 
       
    68     /// \param graph The graph, to which we would like to define the flow map.
       
    69     static FlowMap* createFlowMap(const Graph& graph) {
       
    70       return new FlowMap(graph);
       
    71     }
       
    72 
       
    73     /// \brief The eleavator type used by GoldbergTarjan algorithm.
       
    74     /// 
       
    75     /// The elevator type used by GoldbergTarjan algorithm.
       
    76     ///
       
    77     /// \sa Elevator
       
    78     /// \sa LinkedElevator
       
    79     typedef LinkedElevator<Graph, typename Graph::Node> Elevator;
       
    80     
       
    81     /// \brief Instantiates an Elevator.
       
    82     ///
       
    83     /// This function instantiates a \ref Elevator. 
       
    84     /// \param graph The graph, to which we would like to define the elevator.
       
    85     /// \param max_level The maximum level of the elevator.
       
    86     static Elevator* createElevator(const Graph& graph, int max_level) {
       
    87       return new Elevator(graph, max_level);
       
    88     }
       
    89 
       
    90     /// \brief The tolerance used by the algorithm
       
    91     ///
       
    92     /// The tolerance used by the algorithm to handle inexact computation.
       
    93     typedef Tolerance<Value> Tolerance;
       
    94 
       
    95   };
       
    96 
       
    97   /// \ingroup max_flow
       
    98   /// \brief Goldberg-Tarjan algorithms class.
       
    99   ///
       
   100   /// This class provides an implementation of the \e GoldbergTarjan
       
   101   /// \e algorithm producing a flow of maximum value in a directed
       
   102   /// graph. The GoldbergTarjan algorithm is a theoretical improvement
       
   103   /// of the Goldberg's \ref Preflow "preflow" algorithm by using the \ref
       
   104   /// DynamicTree "dynamic tree" data structure of Sleator and Tarjan.
       
   105   /// 
       
   106   /// The original preflow algorithm with \e "highest label" or \e
       
   107   /// FIFO heuristic has \f$O(n^3)\f$ time complexity. The current
       
   108   /// algorithm improved this complexity to
       
   109   /// \f$O(nm\log(\frac{n^2}{m}))\f$. The algorithm builds limited
       
   110   /// size dynamic trees on the residual graph, which can be used to
       
   111   /// make multilevel push operations and gives a better bound on the
       
   112   /// number of non-saturating pushes.
       
   113   ///
       
   114   /// \param Graph The directed graph type the algorithm runs on.
       
   115   /// \param CapacityMap The capacity map type.
       
   116   /// \param _Traits Traits class to set various data types used by
       
   117   /// the algorithm.  The default traits class is \ref
       
   118   /// GoldbergTarjanDefaultTraits.  See \ref
       
   119   /// GoldbergTarjanDefaultTraits for the documentation of a
       
   120   /// Goldberg-Tarjan traits class.
       
   121   ///
       
   122   /// \author Tamas Hamori and Balazs Dezso
       
   123 #ifdef DOXYGEN
       
   124   template <typename _Graph, typename _CapacityMap, typename _Traits> 
       
   125 #else
       
   126   template <typename _Graph,
       
   127 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
       
   128             typename _Traits = 
       
   129 	    GoldbergTarjanDefaultTraits<_Graph, _CapacityMap> >
       
   130 #endif
       
   131   class GoldbergTarjan {
       
   132   public:
       
   133 
       
   134     typedef _Traits Traits;
       
   135     typedef typename Traits::Graph Graph;
       
   136     typedef typename Traits::CapacityMap CapacityMap;
       
   137     typedef typename Traits::Value Value; 
       
   138 
       
   139     typedef typename Traits::FlowMap FlowMap;
       
   140     typedef typename Traits::Elevator Elevator;
       
   141     typedef typename Traits::Tolerance Tolerance;
       
   142     
       
   143   protected:
       
   144 
       
   145     GRAPH_TYPEDEFS(typename Graph);
       
   146 
       
   147     typedef typename Graph::template NodeMap<Node> NodeNodeMap;
       
   148     typedef typename Graph::template NodeMap<int> IntNodeMap;
       
   149 
       
   150     typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
       
   151     typedef typename Graph::template EdgeMap<Edge> EdgeEdgeMap;
       
   152 
       
   153     typedef typename std::vector<Node> VecNode;
       
   154  
       
   155     typedef DynamicTree<Value,IntNodeMap,Tolerance> DynTree;
       
   156 
       
   157     const Graph& _graph;
       
   158     const CapacityMap* _capacity;
       
   159     int _node_num; //the number of nodes of G
       
   160 
       
   161     Node _source;
       
   162     Node _target;
       
   163 
       
   164     FlowMap* _flow;
       
   165     bool _local_flow;
       
   166 
       
   167     Elevator* _level;
       
   168     bool _local_level;
       
   169 
       
   170     typedef typename Graph::template NodeMap<Value> ExcessMap;
       
   171     ExcessMap* _excess;
       
   172     
       
   173     Tolerance _tolerance;
       
   174 
       
   175     bool _phase;
       
   176 
       
   177     // constant for treesize
       
   178     static const double _tree_bound = 2;
       
   179     int _max_tree_size;
       
   180     
       
   181     //tags for the dynamic tree
       
   182     DynTree *_dt; 
       
   183     //datastructure of dyanamic tree
       
   184     IntNodeMap *_dt_index;
       
   185     //datastrucure for solution of the communication between the two class
       
   186     EdgeNodeMap *_dt_edges; 
       
   187     //nodeMap for storing the outgoing edge from the node in the tree  
       
   188 
       
   189     //max of the type Value
       
   190     const Value _max_value;
       
   191             
       
   192   public:
       
   193 
       
   194     typedef GoldbergTarjan Create;
       
   195 
       
   196     ///\name Named template parameters
       
   197 
       
   198     ///@{
       
   199 
       
   200     template <typename _FlowMap>
       
   201     struct DefFlowMapTraits : public Traits {
       
   202       typedef _FlowMap FlowMap;
       
   203       static FlowMap *createFlowMap(const Graph&) {
       
   204 	throw UninitializedParameter();
       
   205       }
       
   206     };
       
   207 
       
   208     /// \brief \ref named-templ-param "Named parameter" for setting
       
   209     /// FlowMap type
       
   210     ///
       
   211     /// \ref named-templ-param "Named parameter" for setting FlowMap
       
   212     /// type
       
   213     template <typename _FlowMap>
       
   214     struct DefFlowMap 
       
   215       : public GoldbergTarjan<Graph, CapacityMap, 
       
   216 			      DefFlowMapTraits<_FlowMap> > {
       
   217       typedef GoldbergTarjan<Graph, CapacityMap, 
       
   218 			     DefFlowMapTraits<_FlowMap> > Create;
       
   219     };
       
   220 
       
   221     template <typename _Elevator>
       
   222     struct DefElevatorTraits : public Traits {
       
   223       typedef _Elevator Elevator;
       
   224       static Elevator *createElevator(const Graph&, int) {
       
   225 	throw UninitializedParameter();
       
   226       }
       
   227     };
       
   228 
       
   229     /// \brief \ref named-templ-param "Named parameter" for setting
       
   230     /// Elevator type
       
   231     ///
       
   232     /// \ref named-templ-param "Named parameter" for setting Elevator
       
   233     /// type
       
   234     template <typename _Elevator>
       
   235     struct DefElevator 
       
   236       : public GoldbergTarjan<Graph, CapacityMap, 
       
   237 			      DefElevatorTraits<_Elevator> > {
       
   238       typedef GoldbergTarjan<Graph, CapacityMap, 
       
   239 			     DefElevatorTraits<_Elevator> > Create;
       
   240     };
       
   241 
       
   242     template <typename _Elevator>
       
   243     struct DefStandardElevatorTraits : public Traits {
       
   244       typedef _Elevator Elevator;
       
   245       static Elevator *createElevator(const Graph& graph, int max_level) {
       
   246 	return new Elevator(graph, max_level);
       
   247       }
       
   248     };
       
   249 
       
   250     /// \brief \ref named-templ-param "Named parameter" for setting
       
   251     /// Elevator type
       
   252     ///
       
   253     /// \ref named-templ-param "Named parameter" for setting Elevator
       
   254     /// type. The Elevator should be standard constructor interface, ie.
       
   255     /// the graph and the maximum level should be passed to it.
       
   256     template <typename _Elevator>
       
   257     struct DefStandardElevator 
       
   258       : public GoldbergTarjan<Graph, CapacityMap, 
       
   259 			      DefStandardElevatorTraits<_Elevator> > {
       
   260       typedef GoldbergTarjan<Graph, CapacityMap, 
       
   261 			     DefStandardElevatorTraits<_Elevator> > Create;
       
   262     };    
       
   263 
       
   264 
       
   265     ///\ref Exception for the case when s=t.
       
   266 
       
   267     ///\ref Exception for the case when the source equals the target.
       
   268     class InvalidArgument : public lemon::LogicError {
       
   269     public:
       
   270       virtual const char* what() const throw() {
       
   271 	return "lemon::GoldbergTarjan::InvalidArgument";
       
   272       }
       
   273     };
       
   274 
       
   275   public: 
       
   276 
       
   277     /// \brief The constructor of the class.
       
   278     ///
       
   279     /// The constructor of the class. 
       
   280     /// \param graph The directed graph the algorithm runs on. 
       
   281     /// \param capacity The capacity of the edges. 
       
   282     /// \param source The source node.
       
   283     /// \param target The target node.
       
   284     /// Except the graph, all of these parameters can be reset by
       
   285     /// calling \ref source, \ref target, \ref capacityMap and \ref
       
   286     /// flowMap, resp.
       
   287     GoldbergTarjan(const Graph& graph, const CapacityMap& capacity,
       
   288 		   Node source, Node target) 
       
   289       : _graph(graph), _capacity(&capacity), 
       
   290 	_node_num(), _source(source), _target(target),
       
   291 	_flow(0), _local_flow(false),
       
   292 	_level(0), _local_level(false),
       
   293 	_excess(0), _tolerance(), 
       
   294 	_phase(), _max_tree_size(),
       
   295 	_dt(0), _dt_index(0), _dt_edges(0), 
       
   296 	_max_value(std::numeric_limits<Value>::max()) { 
       
   297       if (_source == _target) throw InvalidArgument();
       
   298     }
       
   299 
       
   300     /// \brief Destrcutor.
       
   301     ///
       
   302     /// Destructor.
       
   303     ~GoldbergTarjan() {
       
   304       destroyStructures();
       
   305     }
       
   306     
       
   307     /// \brief Sets the capacity map.
       
   308     ///
       
   309     /// Sets the capacity map.
       
   310     /// \return \c (*this)
       
   311     GoldbergTarjan& capacityMap(const CapacityMap& map) {
       
   312       _capacity = &map;
       
   313       return *this;
       
   314     }
       
   315 
       
   316     /// \brief Sets the flow map.
       
   317     ///
       
   318     /// Sets the flow map.
       
   319     /// \return \c (*this)
       
   320     GoldbergTarjan& flowMap(FlowMap& map) {
       
   321       if (_local_flow) {
       
   322 	delete _flow;
       
   323 	_local_flow = false;
       
   324       }
       
   325       _flow = &map;
       
   326       return *this;
       
   327     }
       
   328 
       
   329     /// \brief Returns the flow map.
       
   330     ///
       
   331     /// \return The flow map.
       
   332     const FlowMap& flowMap() {
       
   333       return *_flow;
       
   334     }
       
   335 
       
   336     /// \brief Sets the elevator.
       
   337     ///
       
   338     /// Sets the elevator.
       
   339     /// \return \c (*this)
       
   340     GoldbergTarjan& elevator(Elevator& elevator) {
       
   341       if (_local_level) {
       
   342 	delete _level;
       
   343 	_local_level = false;
       
   344       }
       
   345       _level = &elevator;
       
   346       return *this;
       
   347     }
       
   348 
       
   349     /// \brief Returns the elevator.
       
   350     ///
       
   351     /// \return The elevator.
       
   352     const Elevator& elevator() {
       
   353       return *_level;
       
   354     }
       
   355 
       
   356     /// \brief Sets the source node.
       
   357     ///
       
   358     /// Sets the source node.
       
   359     /// \return \c (*this)
       
   360     GoldbergTarjan& source(const Node& node) {
       
   361       _source = node;
       
   362       return *this;
       
   363     }
       
   364 
       
   365     /// \brief Sets the target node.
       
   366     ///
       
   367     /// Sets the target node.
       
   368     /// \return \c (*this)
       
   369     GoldbergTarjan& target(const Node& node) {
       
   370       _target = node;
       
   371       return *this;
       
   372     }
       
   373  
       
   374     /// \brief Sets the tolerance used by algorithm.
       
   375     ///
       
   376     /// Sets the tolerance used by algorithm.
       
   377     GoldbergTarjan& tolerance(const Tolerance& tolerance) const {
       
   378       _tolerance = tolerance;
       
   379       if (_dt) {
       
   380 	_dt->tolerance(_tolerance);
       
   381       }
       
   382       return *this;
       
   383     } 
       
   384 
       
   385     /// \brief Returns the tolerance used by algorithm.
       
   386     ///
       
   387     /// Returns the tolerance used by algorithm.
       
   388     const Tolerance& tolerance() const {
       
   389       return tolerance;
       
   390     } 
       
   391 
       
   392          
       
   393   private:
       
   394     
       
   395     void createStructures() {
       
   396       _node_num = countNodes(_graph);
       
   397 
       
   398       _max_tree_size = (double(_node_num) * double(_node_num)) / 
       
   399 	double(countEdges(_graph));
       
   400 
       
   401       if (!_flow) {
       
   402 	_flow = Traits::createFlowMap(_graph);
       
   403 	_local_flow = true;
       
   404       }
       
   405       if (!_level) {
       
   406 	_level = Traits::createElevator(_graph, _node_num);
       
   407 	_local_level = true;
       
   408       }
       
   409       if (!_excess) {
       
   410 	_excess = new ExcessMap(_graph);
       
   411       }
       
   412       if (!_dt_index && !_dt) {
       
   413 	_dt_index = new IntNodeMap(_graph);
       
   414 	_dt = new DynTree(*_dt_index, _tolerance);
       
   415       }
       
   416       if (!_dt_edges) {
       
   417 	_dt_edges = new EdgeNodeMap(_graph);
       
   418       }
       
   419     }
       
   420 
       
   421     void destroyStructures() {
       
   422       if (_local_flow) {
       
   423 	delete _flow;
       
   424       }
       
   425       if (_local_level) {
       
   426 	delete _level;
       
   427       }
       
   428       if (_excess) {
       
   429 	delete _excess;
       
   430       }
       
   431       if (_dt) {
       
   432 	delete _dt;
       
   433       }
       
   434       if (_dt_index) {
       
   435 	delete _dt_index;
       
   436       }
       
   437       if (_dt_edges) {
       
   438 	delete _dt_edges;
       
   439       }
       
   440     }
       
   441 
       
   442     bool sendOut(Node n, Value& excess) {
       
   443 
       
   444       Node w = _dt->findRoot(n);
       
   445       
       
   446       while (w != n) {
       
   447       
       
   448 	Value rem;      
       
   449 	Node u = _dt->findCost(n, rem);
       
   450 
       
   451         if (_tolerance.positive(rem) && !_level->active(w) && w != _target) {
       
   452 	  _level->activate(w);
       
   453         }
       
   454 
       
   455         if (!_tolerance.less(rem, excess)) {
       
   456 	  _dt->addCost(n, - excess);
       
   457 	  _excess->set(w, (*_excess)[w] + excess);
       
   458 	  excess = 0;
       
   459 	  return true;
       
   460 	}
       
   461 	
       
   462 	
       
   463         _dt->addCost(n, - rem);
       
   464 
       
   465         excess -= rem;
       
   466         _excess->set(w, (*_excess)[w] + rem);
       
   467         
       
   468 	_dt->cut(u);
       
   469 	_dt->addCost(u, _max_value);
       
   470 	  
       
   471 	Edge e = (*_dt_edges)[u];
       
   472 	_dt_edges->set(u, INVALID);
       
   473         
       
   474 	if (u == _graph.source(e)) {
       
   475 	  _flow->set(e, (*_capacity)[e]);
       
   476 	} else {
       
   477 	  _flow->set(e, 0);
       
   478 	}           
       
   479 
       
   480         w = _dt->findRoot(n);
       
   481       }      
       
   482       return false;
       
   483     }
       
   484 
       
   485     bool sendIn(Node n, Value& excess) {
       
   486 
       
   487       Node w = _dt->findRoot(n);
       
   488       
       
   489       while (w != n) {
       
   490       
       
   491 	Value rem;      
       
   492 	Node u = _dt->findCost(n, rem);
       
   493 
       
   494         if (_tolerance.positive(rem) && !_level->active(w) && w != _source) {
       
   495 	  _level->activate(w);
       
   496         }
       
   497 
       
   498         if (!_tolerance.less(rem, excess)) {
       
   499 	  _dt->addCost(n, - excess);
       
   500 	  _excess->set(w, (*_excess)[w] + excess);
       
   501 	  excess = 0;
       
   502 	  return true;
       
   503 	}
       
   504 	
       
   505 	
       
   506         _dt->addCost(n, - rem);
       
   507 
       
   508         excess -= rem;
       
   509         _excess->set(w, (*_excess)[w] + rem);
       
   510         
       
   511 	_dt->cut(u);
       
   512 	_dt->addCost(u, _max_value);
       
   513 	  
       
   514 	Edge e = (*_dt_edges)[u];
       
   515 	_dt_edges->set(u, INVALID);
       
   516         
       
   517 	if (u == _graph.source(e)) {
       
   518 	  _flow->set(e, (*_capacity)[e]);
       
   519 	} else {
       
   520 	  _flow->set(e, 0);
       
   521 	}           
       
   522 
       
   523         w = _dt->findRoot(n);
       
   524       }      
       
   525       return false;
       
   526     }
       
   527 
       
   528     void cutChildren(Node n) {
       
   529     
       
   530       for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   531         
       
   532         Node v = _graph.target(e);
       
   533         
       
   534         if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
       
   535           _dt->cut(v);
       
   536           _dt_edges->set(v, INVALID);
       
   537 	  Value rem;
       
   538           _dt->findCost(v, rem);
       
   539           _dt->addCost(v, - rem);
       
   540           _dt->addCost(v, _max_value);
       
   541           _flow->set(e, rem);
       
   542 
       
   543         }      
       
   544       }
       
   545 
       
   546       for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   547         
       
   548         Node v = _graph.source(e);
       
   549         
       
   550         if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
       
   551           _dt->cut(v);
       
   552           _dt_edges->set(v, INVALID);
       
   553 	  Value rem;
       
   554           _dt->findCost(v, rem);
       
   555           _dt->addCost(v, - rem);
       
   556           _dt->addCost(v, _max_value);
       
   557           _flow->set(e, (*_capacity)[e] - rem);
       
   558 
       
   559         }      
       
   560       }
       
   561     }
       
   562 
       
   563     void extractTrees() {
       
   564       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   565 	
       
   566 	Node w = _dt->findRoot(n);
       
   567       
       
   568 	while (w != n) {
       
   569       
       
   570 	  Value rem;      
       
   571 	  Node u = _dt->findCost(n, rem);
       
   572 
       
   573 	  _dt->cut(u);
       
   574 	  _dt->addCost(u, - rem);
       
   575 	  _dt->addCost(u, _max_value);
       
   576 	  
       
   577 	  Edge e = (*_dt_edges)[u];
       
   578 	  _dt_edges->set(u, INVALID);
       
   579 	  
       
   580 	  if (u == _graph.source(e)) {
       
   581 	    _flow->set(e, (*_capacity)[e] - rem);
       
   582 	  } else {
       
   583 	    _flow->set(e, rem);
       
   584 	  }
       
   585 	  
       
   586 	  w = _dt->findRoot(n);
       
   587 	}      
       
   588       }
       
   589     }
       
   590 
       
   591   public:    
       
   592 
       
   593     /// \name Execution control The simplest way to execute the
       
   594     /// algorithm is to use one of the member functions called \c
       
   595     /// run().  
       
   596     /// \n
       
   597     /// If you need more control on initial solution or
       
   598     /// execution then you have to call one \ref init() function and then
       
   599     /// the startFirstPhase() and if you need the startSecondPhase().  
       
   600     
       
   601     ///@{
       
   602 
       
   603     /// \brief Initializes the internal data structures.
       
   604     ///
       
   605     /// Initializes the internal data structures.
       
   606     ///
       
   607     void init() {
       
   608       createStructures();
       
   609 
       
   610       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   611 	_excess->set(n, 0);
       
   612       }
       
   613 
       
   614       for (EdgeIt e(_graph); e != INVALID; ++e) {
       
   615 	_flow->set(e, 0);
       
   616       }
       
   617 
       
   618       _dt->clear();
       
   619       for (NodeIt v(_graph); v != INVALID; ++v) {
       
   620         (*_dt_edges)[v] = INVALID;
       
   621         _dt->makeTree(v);
       
   622         _dt->addCost(v, _max_value);
       
   623       }
       
   624 
       
   625       typename Graph::template NodeMap<bool> reached(_graph, false);
       
   626 
       
   627       _level->initStart();
       
   628       _level->initAddItem(_target);
       
   629 
       
   630       std::vector<Node> queue;
       
   631       reached.set(_source, true);
       
   632 
       
   633       queue.push_back(_target);
       
   634       reached.set(_target, true);
       
   635       while (!queue.empty()) {
       
   636 	_level->initNewLevel();
       
   637 	std::vector<Node> nqueue;
       
   638 	for (int i = 0; i < int(queue.size()); ++i) {
       
   639 	  Node n = queue[i];
       
   640 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   641 	    Node u = _graph.source(e);
       
   642 	    if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
       
   643 	      reached.set(u, true);
       
   644 	      _level->initAddItem(u);
       
   645 	      nqueue.push_back(u);
       
   646 	    }
       
   647 	  }
       
   648 	}
       
   649 	queue.swap(nqueue);
       
   650       }
       
   651       _level->initFinish();
       
   652 
       
   653       for (OutEdgeIt e(_graph, _source); e != INVALID; ++e) {
       
   654 	if (_tolerance.positive((*_capacity)[e])) {
       
   655 	  Node u = _graph.target(e);
       
   656 	  if ((*_level)[u] == _level->maxLevel()) continue;
       
   657 	  _flow->set(e, (*_capacity)[e]);
       
   658 	  _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
       
   659 	  if (u != _target && !_level->active(u)) {
       
   660 	    _level->activate(u);
       
   661 	  }
       
   662 	}
       
   663       }
       
   664     }
       
   665 
       
   666     /// \brief Starts the first phase of the preflow algorithm.
       
   667     ///
       
   668     /// The preflow algorithm consists of two phases, this method runs
       
   669     /// the first phase. After the first phase the maximum flow value
       
   670     /// and a minimum value cut can already be computed, although a
       
   671     /// maximum flow is not yet obtained. So after calling this method
       
   672     /// \ref flowValue() returns the value of a maximum flow and \ref
       
   673     /// minCut() returns a minimum cut.     
       
   674     /// \pre One of the \ref init() functions should be called. 
       
   675     void startFirstPhase() {
       
   676       _phase = true;
       
   677       Node n;
       
   678 
       
   679       while ((n = _level->highestActive()) != INVALID) {
       
   680 	Value excess = (*_excess)[n];
       
   681 	int level = _level->highestActiveLevel();
       
   682 	int new_level = _level->maxLevel();
       
   683 
       
   684 	if (_dt->findRoot(n) != n) {
       
   685 	  if (sendOut(n, excess)) goto no_more_push;
       
   686 	}
       
   687 	
       
   688 	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   689 	  Value rem = (*_capacity)[e] - (*_flow)[e];
       
   690 	  Node v = _graph.target(e);
       
   691 	  
       
   692 	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
       
   693 
       
   694 	  if ((*_level)[v] < level) {
       
   695 	    
       
   696 	    if (_dt->findSize(n) + _dt->findSize(v) < 
       
   697 		_tree_bound * _max_tree_size) {
       
   698 	      _dt->addCost(n, -_max_value);
       
   699 	      _dt->addCost(n, rem);
       
   700 	      _dt->link(n, v);
       
   701 	      _dt_edges->set(n, e);
       
   702 	      if (sendOut(n, excess)) goto no_more_push;
       
   703 	    } else {
       
   704 	      if (!_level->active(v) && v != _target) {
       
   705 		_level->activate(v);
       
   706 	      }
       
   707 	      if (!_tolerance.less(rem, excess)) {
       
   708 		_flow->set(e, (*_flow)[e] + excess);
       
   709 		_excess->set(v, (*_excess)[v] + excess);
       
   710 		excess = 0;		  
       
   711 		goto no_more_push;
       
   712 	      } else {
       
   713 		excess -= rem;
       
   714 		_excess->set(v, (*_excess)[v] + rem);
       
   715 		_flow->set(e, (*_capacity)[e]);
       
   716 	      }		
       
   717 	    }
       
   718 	  } else if (new_level > (*_level)[v]) {
       
   719 	    new_level = (*_level)[v];
       
   720 	  }
       
   721 	}
       
   722 
       
   723 	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   724 	  Value rem = (*_flow)[e];
       
   725 	  Node v = _graph.source(e);
       
   726 	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
       
   727 
       
   728 	  if ((*_level)[v] < level) {
       
   729 	    
       
   730 	    if (_dt->findSize(n) + _dt->findSize(v) < 
       
   731 		_tree_bound * _max_tree_size) {
       
   732 	      _dt->addCost(n, - _max_value);
       
   733 	      _dt->addCost(n, rem);
       
   734 	      _dt->link(n, v);
       
   735 	      _dt_edges->set(n, e);
       
   736 	      if (sendOut(n, excess)) goto no_more_push;
       
   737 	    } else {
       
   738 	      if (!_level->active(v) && v != _target) {
       
   739 		_level->activate(v);
       
   740 	      }
       
   741 	      if (!_tolerance.less(rem, excess)) {
       
   742 		_flow->set(e, (*_flow)[e] - excess);
       
   743 		_excess->set(v, (*_excess)[v] + excess);
       
   744 		excess = 0;		  
       
   745 		goto no_more_push;
       
   746 	      } else {
       
   747 		excess -= rem;
       
   748 		_excess->set(v, (*_excess)[v] + rem);
       
   749 		_flow->set(e, 0);
       
   750 	      }		
       
   751 	    }
       
   752 	  } else if (new_level > (*_level)[v]) {
       
   753 	    new_level = (*_level)[v];
       
   754 	  }
       
   755 	}
       
   756 		
       
   757       no_more_push:
       
   758 
       
   759 	_excess->set(n, excess);
       
   760 	
       
   761 	if (excess != 0) {
       
   762 	  cutChildren(n);
       
   763 	  if (new_level + 1 < _level->maxLevel()) {
       
   764 	    _level->liftHighestActive(new_level + 1);
       
   765 	  } else {
       
   766 	    _level->liftHighestActiveToTop();
       
   767 	  }
       
   768 	  if (_level->emptyLevel(level)) {
       
   769 	    _level->liftToTop(level);
       
   770 	  }
       
   771 	} else {
       
   772 	  _level->deactivate(n);
       
   773 	}	
       
   774       }
       
   775       extractTrees();
       
   776     }
       
   777 
       
   778     /// \brief Starts the second phase of the preflow algorithm.
       
   779     ///
       
   780     /// The preflow algorithm consists of two phases, this method runs
       
   781     /// the second phase. After calling \ref init() and \ref
       
   782     /// startFirstPhase() and then \ref startSecondPhase(), \ref
       
   783     /// flowMap() return a maximum flow, \ref flowValue() returns the
       
   784     /// value of a maximum flow, \ref minCut() returns a minimum cut
       
   785     /// \pre The \ref init() and startFirstPhase() functions should be
       
   786     /// called before.
       
   787     void startSecondPhase() {
       
   788       _phase = false;
       
   789       
       
   790       typename Graph::template NodeMap<bool> reached(_graph, false);
       
   791       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   792 	reached.set(n, (*_level)[n] < _level->maxLevel());
       
   793       }
       
   794 
       
   795       _level->initStart();
       
   796       _level->initAddItem(_source);
       
   797  
       
   798       std::vector<Node> queue;
       
   799       queue.push_back(_source);
       
   800       reached.set(_source, true);
       
   801 
       
   802       while (!queue.empty()) {
       
   803 	_level->initNewLevel();
       
   804 	std::vector<Node> nqueue;
       
   805 	for (int i = 0; i < int(queue.size()); ++i) {
       
   806 	  Node n = queue[i];
       
   807 	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   808 	    Node v = _graph.target(e);
       
   809 	    if (!reached[v] && _tolerance.positive((*_flow)[e])) {
       
   810 	      reached.set(v, true);
       
   811 	      _level->initAddItem(v);
       
   812 	      nqueue.push_back(v);
       
   813 	    }
       
   814 	  }
       
   815 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   816 	    Node u = _graph.source(e);
       
   817 	    if (!reached[u] && 
       
   818 		_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
       
   819 	      reached.set(u, true);
       
   820 	      _level->initAddItem(u);
       
   821 	      nqueue.push_back(u);
       
   822 	    }
       
   823 	  }
       
   824 	}
       
   825 	queue.swap(nqueue);
       
   826       }
       
   827       _level->initFinish();
       
   828 
       
   829       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   830 	if ((*_excess)[n] > 0 && _target != n) {
       
   831 	  _level->activate(n);
       
   832 	}
       
   833       }
       
   834 
       
   835       Node n;
       
   836 
       
   837       while ((n = _level->highestActive()) != INVALID) {
       
   838 	Value excess = (*_excess)[n];
       
   839 	int level = _level->highestActiveLevel();
       
   840 	int new_level = _level->maxLevel();
       
   841 
       
   842 	if (_dt->findRoot(n) != n) {
       
   843 	  if (sendIn(n, excess)) goto no_more_push;
       
   844 	}
       
   845 	
       
   846 	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   847 	  Value rem = (*_capacity)[e] - (*_flow)[e];
       
   848 	  Node v = _graph.target(e);
       
   849 	  
       
   850 	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
       
   851 
       
   852 	  if ((*_level)[v] < level) {
       
   853 	    
       
   854 	    if (_dt->findSize(n) + _dt->findSize(v) < 
       
   855 		_tree_bound * _max_tree_size) {
       
   856 	      _dt->addCost(n, -_max_value);
       
   857 	      _dt->addCost(n, rem);
       
   858 	      _dt->link(n, v);
       
   859 	      _dt_edges->set(n, e);
       
   860 	      if (sendIn(n, excess)) goto no_more_push;
       
   861 	    } else {
       
   862 	      if (!_level->active(v) && v != _source) {
       
   863 		_level->activate(v);
       
   864 	      }
       
   865 	      if (!_tolerance.less(rem, excess)) {
       
   866 		_flow->set(e, (*_flow)[e] + excess);
       
   867 		_excess->set(v, (*_excess)[v] + excess);
       
   868 		excess = 0;		  
       
   869 		goto no_more_push;
       
   870 	      } else {
       
   871 		excess -= rem;
       
   872 		_excess->set(v, (*_excess)[v] + rem);
       
   873 		_flow->set(e, (*_capacity)[e]);
       
   874 	      }		
       
   875 	    }
       
   876 	  } else if (new_level > (*_level)[v]) {
       
   877 	    new_level = (*_level)[v];
       
   878 	  }
       
   879 	}
       
   880 
       
   881 	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
       
   882 	  Value rem = (*_flow)[e];
       
   883 	  Node v = _graph.source(e);
       
   884 	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
       
   885 
       
   886 	  if ((*_level)[v] < level) {
       
   887 	    
       
   888 	    if (_dt->findSize(n) + _dt->findSize(v) < 
       
   889 		_tree_bound * _max_tree_size) {
       
   890 	      _dt->addCost(n, - _max_value);
       
   891 	      _dt->addCost(n, rem);
       
   892 	      _dt->link(n, v);
       
   893 	      _dt_edges->set(n, e);
       
   894 	      if (sendIn(n, excess)) goto no_more_push;
       
   895 	    } else {
       
   896 	      if (!_level->active(v) && v != _source) {
       
   897 		_level->activate(v);
       
   898 	      }
       
   899 	      if (!_tolerance.less(rem, excess)) {
       
   900 		_flow->set(e, (*_flow)[e] - excess);
       
   901 		_excess->set(v, (*_excess)[v] + excess);
       
   902 		excess = 0;		  
       
   903 		goto no_more_push;
       
   904 	      } else {
       
   905 		excess -= rem;
       
   906 		_excess->set(v, (*_excess)[v] + rem);
       
   907 		_flow->set(e, 0);
       
   908 	      }		
       
   909 	    }
       
   910 	  } else if (new_level > (*_level)[v]) {
       
   911 	    new_level = (*_level)[v];
       
   912 	  }
       
   913 	}
       
   914 		
       
   915       no_more_push:
       
   916 
       
   917 	_excess->set(n, excess);
       
   918 	
       
   919 	if (excess != 0) {
       
   920 	  cutChildren(n);
       
   921 	  if (new_level + 1 < _level->maxLevel()) {
       
   922 	    _level->liftHighestActive(new_level + 1);
       
   923 	  } else {
       
   924 	    _level->liftHighestActiveToTop();
       
   925 	  }
       
   926 	  if (_level->emptyLevel(level)) {
       
   927 	    _level->liftToTop(level);
       
   928 	  }
       
   929 	} else {
       
   930 	  _level->deactivate(n);
       
   931 	}	
       
   932       }
       
   933       extractTrees();
       
   934     }
       
   935 
       
   936     /// \brief Runs the Goldberg-Tarjan algorithm.  
       
   937     ///
       
   938     /// Runs the Goldberg-Tarjan algorithm.
       
   939     /// \note pf.run() is just a shortcut of the following code.
       
   940     /// \code
       
   941     ///   pf.init();
       
   942     ///   pf.startFirstPhase();
       
   943     ///   pf.startSecondPhase();
       
   944     /// \endcode
       
   945     void run() {
       
   946       init();
       
   947       startFirstPhase();
       
   948       startSecondPhase();
       
   949     }
       
   950 
       
   951     /// \brief Runs the Goldberg-Tarjan algorithm to compute the minimum cut.  
       
   952     ///
       
   953     /// Runs the Goldberg-Tarjan algorithm to compute the minimum cut.
       
   954     /// \note pf.runMinCut() is just a shortcut of the following code.
       
   955     /// \code
       
   956     ///   pf.init();
       
   957     ///   pf.startFirstPhase();
       
   958     /// \endcode
       
   959     void runMinCut() {
       
   960       init();
       
   961       startFirstPhase();
       
   962     }
       
   963 
       
   964     /// @}
       
   965 
       
   966     /// \name Query Functions
       
   967     /// The result of the %Dijkstra algorithm can be obtained using these
       
   968     /// functions.\n
       
   969     /// Before the use of these functions,
       
   970     /// either run() or start() must be called.
       
   971     
       
   972     ///@{
       
   973 
       
   974     /// \brief Returns the value of the maximum flow.
       
   975     ///
       
   976     /// Returns the value of the maximum flow by returning the excess
       
   977     /// of the target node \c t. This value equals to the value of
       
   978     /// the maximum flow already after the first phase.
       
   979     Value flowValue() const {
       
   980       return (*_excess)[_target];
       
   981     }
       
   982 
       
   983     /// \brief Returns true when the node is on the source side of minimum cut.
       
   984     ///
       
   985     /// Returns true when the node is on the source side of minimum
       
   986     /// cut. This method can be called both after running \ref
       
   987     /// startFirstPhase() and \ref startSecondPhase().
       
   988     bool minCut(const Node& node) const {
       
   989       return ((*_level)[node] == _level->maxLevel()) == _phase;
       
   990     }
       
   991  
       
   992     /// \brief Returns a minimum value cut.
       
   993     ///
       
   994     /// Sets the \c cutMap to the characteristic vector of a minimum value
       
   995     /// cut. This method can be called both after running \ref
       
   996     /// startFirstPhase() and \ref startSecondPhase(). The result after second
       
   997     /// phase could be changed slightly if inexact computation is used.
       
   998     /// \pre The \c cutMap should be a bool-valued node-map.
       
   999     template <typename CutMap>
       
  1000     void minCutMap(CutMap& cutMap) const {
       
  1001       for (NodeIt n(_graph); n != INVALID; ++n) {
       
  1002 	cutMap.set(n, minCut(n));
       
  1003       }
       
  1004     }
       
  1005 
       
  1006     /// \brief Returns the flow on the edge.
       
  1007     ///
       
  1008     /// Sets the \c flowMap to the flow on the edges. This method can
       
  1009     /// be called after the second phase of algorithm.
       
  1010     Value flow(const Edge& edge) const {
       
  1011       return (*_flow)[edge];
       
  1012     }
       
  1013 
       
  1014     /// @}
       
  1015 
       
  1016   }; 
       
  1017   
       
  1018 } //namespace lemon
       
  1019 
       
  1020 #endif