|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2006 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_BUCKET_HEAP_H |
|
20 #define LEMON_BUCKET_HEAP_H |
|
21 |
|
22 ///\ingroup auxdat |
|
23 ///\file |
|
24 ///\brief Bucket Heap implementation. |
|
25 |
|
26 #include <vector> |
|
27 #include <utility> |
|
28 #include <functional> |
|
29 |
|
30 namespace lemon { |
|
31 |
|
32 /// \ingroup auxdat |
|
33 |
|
34 /// \brief A Bucket Heap implementation. |
|
35 /// |
|
36 /// This class implements the \e bucket \e heap data structure. A \e heap |
|
37 /// is a data structure for storing items with specified values called \e |
|
38 /// priorities in such a way that finding the item with minimum priority is |
|
39 /// efficient. The bucket heap is very simple implementation, it can store |
|
40 /// only integer priorities and it stores for each priority in the [0..C] |
|
41 /// range a list of items. So it should be used only when the priorities |
|
42 /// are small. It is not intended to use as dijkstra heap. |
|
43 /// |
|
44 /// \param _Item Type of the items to be stored. |
|
45 /// \param _ItemIntMap A read and writable Item int map, used internally |
|
46 /// to handle the cross references. |
|
47 /// \param minimize If the given parameter is true then the heap gives back |
|
48 /// the lowest priority. |
|
49 template <typename _Item, typename _ItemIntMap, bool minimize = true > |
|
50 class BucketHeap { |
|
51 |
|
52 public: |
|
53 typedef _Item Item; |
|
54 typedef int Prio; |
|
55 typedef std::pair<Item, Prio> Pair; |
|
56 typedef _ItemIntMap ItemIntMap; |
|
57 |
|
58 /// \brief Type to represent the items states. |
|
59 /// |
|
60 /// Each Item element have a state associated to it. It may be "in heap", |
|
61 /// "pre heap" or "post heap". The latter two are indifferent from the |
|
62 /// heap's point of view, but may be useful to the user. |
|
63 /// |
|
64 /// The ItemIntMap \e should be initialized in such way that it maps |
|
65 /// PRE_HEAP (-1) to any element to be put in the heap... |
|
66 enum state_enum { |
|
67 IN_HEAP = 0, |
|
68 PRE_HEAP = -1, |
|
69 POST_HEAP = -2 |
|
70 }; |
|
71 |
|
72 public: |
|
73 /// \brief The constructor. |
|
74 /// |
|
75 /// The constructor. |
|
76 /// \param _index should be given to the constructor, since it is used |
|
77 /// internally to handle the cross references. The value of the map |
|
78 /// should be PRE_HEAP (-1) for each element. |
|
79 explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {} |
|
80 |
|
81 /// The number of items stored in the heap. |
|
82 /// |
|
83 /// \brief Returns the number of items stored in the heap. |
|
84 int size() const { return data.size(); } |
|
85 |
|
86 /// \brief Checks if the heap stores no items. |
|
87 /// |
|
88 /// Returns \c true if and only if the heap stores no items. |
|
89 bool empty() const { return data.empty(); } |
|
90 |
|
91 /// \brief Make empty this heap. |
|
92 /// |
|
93 /// Make empty this heap. |
|
94 void clear() { |
|
95 for (int i = 0; i < (int)data.size(); ++i) { |
|
96 index[data[i].item] = -2; |
|
97 } |
|
98 data.clear(); first.clear(); minimal = 0; |
|
99 } |
|
100 |
|
101 private: |
|
102 |
|
103 void relocate_last(int idx) { |
|
104 if (idx + 1 < (int)data.size()) { |
|
105 data[idx] = data.back(); |
|
106 if (data[idx].prev != -1) { |
|
107 data[data[idx].prev].next = idx; |
|
108 } else { |
|
109 first[data[idx].value] = idx; |
|
110 } |
|
111 if (data[idx].next != -1) { |
|
112 data[data[idx].next].prev = idx; |
|
113 } |
|
114 index[data[idx].item] = idx; |
|
115 } |
|
116 data.pop_back(); |
|
117 } |
|
118 |
|
119 void unlace(int idx) { |
|
120 if (data[idx].prev != -1) { |
|
121 data[data[idx].prev].next = data[idx].next; |
|
122 } else { |
|
123 first[data[idx].value] = data[idx].next; |
|
124 } |
|
125 if (data[idx].next != -1) { |
|
126 data[data[idx].next].prev = data[idx].prev; |
|
127 } |
|
128 } |
|
129 |
|
130 void lace(int idx) { |
|
131 if ((int)first.size() <= data[idx].value) { |
|
132 first.resize(data[idx].value + 1, -1); |
|
133 } |
|
134 data[idx].next = first[data[idx].value]; |
|
135 if (data[idx].next != -1) { |
|
136 data[data[idx].next].prev = idx; |
|
137 } |
|
138 first[data[idx].value] = idx; |
|
139 data[idx].prev = -1; |
|
140 } |
|
141 |
|
142 public: |
|
143 /// \brief Insert a pair of item and priority into the heap. |
|
144 /// |
|
145 /// Adds \c p.first to the heap with priority \c p.second. |
|
146 /// \param p The pair to insert. |
|
147 void push(const Pair& p) { |
|
148 push(p.first, p.second); |
|
149 } |
|
150 |
|
151 /// \brief Insert an item into the heap with the given priority. |
|
152 /// |
|
153 /// Adds \c i to the heap with priority \c p. |
|
154 /// \param i The item to insert. |
|
155 /// \param p The priority of the item. |
|
156 void push(const Item &i, const Prio &p) { |
|
157 int idx = data.size(); |
|
158 index[i] = idx; |
|
159 data.push_back(BucketItem(i, p)); |
|
160 lace(idx); |
|
161 if (p < minimal) { |
|
162 minimal = p; |
|
163 } |
|
164 } |
|
165 |
|
166 /// \brief Returns the item with minimum priority. |
|
167 /// |
|
168 /// This method returns the item with minimum priority. |
|
169 /// \pre The heap must be nonempty. |
|
170 Item top() const { |
|
171 while (first[minimal] == -1) { |
|
172 ++minimal; |
|
173 } |
|
174 return data[first[minimal]].item; |
|
175 } |
|
176 |
|
177 /// \brief Returns the minimum priority. |
|
178 /// |
|
179 /// It returns the minimum priority. |
|
180 /// \pre The heap must be nonempty. |
|
181 Prio prio() const { |
|
182 while (first[minimal] == -1) { |
|
183 ++minimal; |
|
184 } |
|
185 return minimal; |
|
186 } |
|
187 |
|
188 /// \brief Deletes the item with minimum priority. |
|
189 /// |
|
190 /// This method deletes the item with minimum priority from the heap. |
|
191 /// \pre The heap must be non-empty. |
|
192 void pop() { |
|
193 while (first[minimal] == -1) { |
|
194 ++minimal; |
|
195 } |
|
196 int idx = first[minimal]; |
|
197 index[data[idx].item] = -2; |
|
198 unlace(idx); |
|
199 relocate_last(idx); |
|
200 } |
|
201 |
|
202 /// \brief Deletes \c i from the heap. |
|
203 /// |
|
204 /// This method deletes item \c i from the heap, if \c i was |
|
205 /// already stored in the heap. |
|
206 /// \param i The item to erase. |
|
207 void erase(const Item &i) { |
|
208 int idx = index[i]; |
|
209 index[data[idx].item] = -2; |
|
210 unlace(idx); |
|
211 relocate_last(idx); |
|
212 } |
|
213 |
|
214 |
|
215 /// \brief Returns the priority of \c i. |
|
216 /// |
|
217 /// This function returns the priority of item \c i. |
|
218 /// \pre \c i must be in the heap. |
|
219 /// \param i The item. |
|
220 Prio operator[](const Item &i) const { |
|
221 int idx = index[i]; |
|
222 return data[idx].value; |
|
223 } |
|
224 |
|
225 /// \brief \c i gets to the heap with priority \c p independently |
|
226 /// if \c i was already there. |
|
227 /// |
|
228 /// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
229 /// in the heap and sets the priority of \c i to \c p otherwise. |
|
230 /// \param i The item. |
|
231 /// \param p The priority. |
|
232 void set(const Item &i, const Prio &p) { |
|
233 int idx = index[i]; |
|
234 if (idx < 0) { |
|
235 push(i,p); |
|
236 } else if (p > data[idx].value) { |
|
237 increase(i, p); |
|
238 } else { |
|
239 decrease(i, p); |
|
240 } |
|
241 } |
|
242 |
|
243 /// \brief Decreases the priority of \c i to \c p. |
|
244 |
|
245 /// This method decreases the priority of item \c i to \c p. |
|
246 /// \pre \c i must be stored in the heap with priority at least \c |
|
247 /// p relative to \c Compare. |
|
248 /// \param i The item. |
|
249 /// \param p The priority. |
|
250 void decrease(const Item &i, const Prio &p) { |
|
251 int idx = index[i]; |
|
252 unlace(idx); |
|
253 data[idx].value = p; |
|
254 if (p < minimal) { |
|
255 minimal = p; |
|
256 } |
|
257 lace(idx); |
|
258 } |
|
259 |
|
260 /// \brief Increases the priority of \c i to \c p. |
|
261 /// |
|
262 /// This method sets the priority of item \c i to \c p. |
|
263 /// \pre \c i must be stored in the heap with priority at most \c |
|
264 /// p relative to \c Compare. |
|
265 /// \param i The item. |
|
266 /// \param p The priority. |
|
267 void increase(const Item &i, const Prio &p) { |
|
268 int idx = index[i]; |
|
269 unlace(idx); |
|
270 data[idx].value = p; |
|
271 lace(idx); |
|
272 } |
|
273 |
|
274 /// \brief Returns if \c item is in, has already been in, or has |
|
275 /// never been in the heap. |
|
276 /// |
|
277 /// This method returns PRE_HEAP if \c item has never been in the |
|
278 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
279 /// otherwise. In the latter case it is possible that \c item will |
|
280 /// get back to the heap again. |
|
281 /// \param i The item. |
|
282 state_enum state(const Item &i) const { |
|
283 int idx = index[i]; |
|
284 if (idx >= 0) idx = 0; |
|
285 return state_enum(idx); |
|
286 } |
|
287 |
|
288 /// \brief Sets the state of the \c item in the heap. |
|
289 /// |
|
290 /// Sets the state of the \c item in the heap. It can be used to |
|
291 /// manually clear the heap when it is important to achive the |
|
292 /// better time complexity. |
|
293 /// \param i The item. |
|
294 /// \param st The state. It should not be \c IN_HEAP. |
|
295 void state(const Item& i, state_enum st) { |
|
296 switch (st) { |
|
297 case POST_HEAP: |
|
298 case PRE_HEAP: |
|
299 if (state(i) == IN_HEAP) { |
|
300 erase(i); |
|
301 } |
|
302 index[i] = st; |
|
303 break; |
|
304 case IN_HEAP: |
|
305 break; |
|
306 } |
|
307 } |
|
308 |
|
309 private: |
|
310 |
|
311 struct BucketItem { |
|
312 BucketItem(const Item& _item, int _value) |
|
313 : item(_item), value(_value) {} |
|
314 |
|
315 Item item; |
|
316 int value; |
|
317 |
|
318 int prev, next; |
|
319 }; |
|
320 |
|
321 ItemIntMap& index; |
|
322 std::vector<int> first; |
|
323 std::vector<BucketItem> data; |
|
324 mutable int minimal; |
|
325 |
|
326 }; // class BucketHeap |
|
327 |
|
328 |
|
329 template <typename _Item, typename _ItemIntMap> |
|
330 class BucketHeap<_Item, _ItemIntMap, false> { |
|
331 |
|
332 public: |
|
333 typedef _Item Item; |
|
334 typedef int Prio; |
|
335 typedef std::pair<Item, Prio> Pair; |
|
336 typedef _ItemIntMap ItemIntMap; |
|
337 |
|
338 enum state_enum { |
|
339 IN_HEAP = 0, |
|
340 PRE_HEAP = -1, |
|
341 POST_HEAP = -2 |
|
342 }; |
|
343 |
|
344 public: |
|
345 |
|
346 explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {} |
|
347 |
|
348 int size() const { return data.size(); } |
|
349 bool empty() const { return data.empty(); } |
|
350 |
|
351 void clear() { |
|
352 for (int i = 0; i < (int)data.size(); ++i) { |
|
353 index[data[i].item] = -2; |
|
354 } |
|
355 data.clear(); first.clear(); maximal = -1; |
|
356 } |
|
357 |
|
358 private: |
|
359 |
|
360 void relocate_last(int idx) { |
|
361 if (idx + 1 != (int)data.size()) { |
|
362 data[idx] = data.back(); |
|
363 if (data[idx].prev != -1) { |
|
364 data[data[idx].prev].next = idx; |
|
365 } else { |
|
366 first[data[idx].value] = idx; |
|
367 } |
|
368 if (data[idx].next != -1) { |
|
369 data[data[idx].next].prev = idx; |
|
370 } |
|
371 index[data[idx].item] = idx; |
|
372 } |
|
373 data.pop_back(); |
|
374 } |
|
375 |
|
376 void unlace(int idx) { |
|
377 if (data[idx].prev != -1) { |
|
378 data[data[idx].prev].next = data[idx].next; |
|
379 } else { |
|
380 first[data[idx].value] = data[idx].next; |
|
381 } |
|
382 if (data[idx].next != -1) { |
|
383 data[data[idx].next].prev = data[idx].prev; |
|
384 } |
|
385 } |
|
386 |
|
387 void lace(int idx) { |
|
388 if ((int)first.size() <= data[idx].value) { |
|
389 first.resize(data[idx].value + 1, -1); |
|
390 } |
|
391 data[idx].next = first[data[idx].value]; |
|
392 if (data[idx].next != -1) { |
|
393 data[data[idx].next].prev = idx; |
|
394 } |
|
395 first[data[idx].value] = idx; |
|
396 data[idx].prev = -1; |
|
397 } |
|
398 |
|
399 public: |
|
400 |
|
401 void push(const Pair& p) { |
|
402 push(p.first, p.second); |
|
403 } |
|
404 |
|
405 void push(const Item &i, const Prio &p) { |
|
406 int idx = data.size(); |
|
407 index[i] = idx; |
|
408 data.push_back(BucketItem(i, p)); |
|
409 lace(idx); |
|
410 if (data[idx].value > maximal) { |
|
411 maximal = data[idx].value; |
|
412 } |
|
413 } |
|
414 |
|
415 Item top() const { |
|
416 while (first[maximal] == -1) { |
|
417 --maximal; |
|
418 } |
|
419 return data[first[maximal]].item; |
|
420 } |
|
421 |
|
422 Prio prio() const { |
|
423 while (first[maximal] == -1) { |
|
424 --maximal; |
|
425 } |
|
426 return maximal; |
|
427 } |
|
428 |
|
429 void pop() { |
|
430 while (first[maximal] == -1) { |
|
431 --maximal; |
|
432 } |
|
433 int idx = first[maximal]; |
|
434 index[data[idx].item] = -2; |
|
435 unlace(idx); |
|
436 relocate_last(idx); |
|
437 } |
|
438 |
|
439 void erase(const Item &i) { |
|
440 int idx = index[i]; |
|
441 index[data[idx].item] = -2; |
|
442 unlace(idx); |
|
443 relocate_last(idx); |
|
444 } |
|
445 |
|
446 Prio operator[](const Item &i) const { |
|
447 int idx = index[i]; |
|
448 return data[idx].value; |
|
449 } |
|
450 |
|
451 void set(const Item &i, const Prio &p) { |
|
452 int idx = index[i]; |
|
453 if (idx < 0) { |
|
454 push(i,p); |
|
455 } else if (p > data[idx].value) { |
|
456 decrease(i, p); |
|
457 } else { |
|
458 increase(i, p); |
|
459 } |
|
460 } |
|
461 |
|
462 void decrease(const Item &i, const Prio &p) { |
|
463 int idx = index[i]; |
|
464 unlace(idx); |
|
465 data[idx].value = p; |
|
466 if (p > maximal) { |
|
467 maximal = p; |
|
468 } |
|
469 lace(idx); |
|
470 } |
|
471 |
|
472 void increase(const Item &i, const Prio &p) { |
|
473 int idx = index[i]; |
|
474 unlace(idx); |
|
475 data[idx].value = p; |
|
476 lace(idx); |
|
477 } |
|
478 |
|
479 state_enum state(const Item &i) const { |
|
480 int idx = index[i]; |
|
481 if (idx >= 0) idx = 0; |
|
482 return state_enum(idx); |
|
483 } |
|
484 |
|
485 void state(const Item& i, state_enum st) { |
|
486 switch (st) { |
|
487 case POST_HEAP: |
|
488 case PRE_HEAP: |
|
489 if (state(i) == IN_HEAP) { |
|
490 erase(i); |
|
491 } |
|
492 index[i] = st; |
|
493 break; |
|
494 case IN_HEAP: |
|
495 break; |
|
496 } |
|
497 } |
|
498 |
|
499 private: |
|
500 |
|
501 struct BucketItem { |
|
502 BucketItem(const Item& _item, int _value) |
|
503 : item(_item), value(_value) {} |
|
504 |
|
505 Item item; |
|
506 int value; |
|
507 |
|
508 int prev, next; |
|
509 }; |
|
510 |
|
511 ItemIntMap& index; |
|
512 std::vector<int> first; |
|
513 std::vector<BucketItem> data; |
|
514 mutable int maximal; |
|
515 |
|
516 }; // class BucketHeap |
|
517 |
|
518 } |
|
519 |
|
520 #endif |