|
1 // -*- c++ -*- |
|
2 #include <iostream> |
|
3 #include <fstream> |
|
4 #include <vector> |
|
5 #include <cstdlib> |
|
6 |
|
7 #include <LEDA/graph.h> |
|
8 #include <LEDA/mcb_matching.h> |
|
9 #include <LEDA/list.h> |
|
10 #include <LEDA/graph_gen.h> |
|
11 |
|
12 #include <leda_graph_wrapper.h> |
|
13 #include <list_graph.h> |
|
14 //#include <smart_graph.h> |
|
15 //#include <dimacs.h> |
|
16 #include <hugo/time_measure.h> |
|
17 #include <for_each_macros.h> |
|
18 #include <hugo/graph_wrapper.h> |
|
19 #include <bipartite_graph_wrapper.h> |
|
20 #include <hugo/maps.h> |
|
21 #include <max_flow.h> |
|
22 |
|
23 /** |
|
24 * Inicializalja a veletlenszamgeneratort. |
|
25 * Figyelem, ez nem jo igazi random szamokhoz, |
|
26 * erre ne bizzad a titkaidat! |
|
27 */ |
|
28 void random_init() |
|
29 { |
|
30 unsigned int seed = getpid(); |
|
31 seed |= seed << 15; |
|
32 seed ^= time(0); |
|
33 |
|
34 srand(seed); |
|
35 } |
|
36 |
|
37 /** |
|
38 * Egy veletlen int-et ad vissza 0 es m-1 kozott. |
|
39 */ |
|
40 int random(int m) |
|
41 { |
|
42 return int( double(m) * rand() / (RAND_MAX + 1.0) ); |
|
43 } |
|
44 |
|
45 using namespace hugo; |
|
46 |
|
47 int main() { |
|
48 //for leda graph |
|
49 leda::graph lg; |
|
50 //lg.make_undirected(); |
|
51 typedef LedaGraphWrapper<leda::graph> Graph; |
|
52 Graph g(lg); |
|
53 |
|
54 //for UndirListGraph |
|
55 //typedef UndirListGraph Graph; |
|
56 //Graph g; |
|
57 |
|
58 typedef Graph::Node Node; |
|
59 typedef Graph::NodeIt NodeIt; |
|
60 typedef Graph::Edge Edge; |
|
61 typedef Graph::EdgeIt EdgeIt; |
|
62 typedef Graph::OutEdgeIt OutEdgeIt; |
|
63 |
|
64 std::vector<Graph::Node> s_nodes; |
|
65 std::vector<Graph::Node> t_nodes; |
|
66 |
|
67 int a; |
|
68 std::cout << "number of nodes in the first color class="; |
|
69 std::cin >> a; |
|
70 int b; |
|
71 std::cout << "number of nodes in the second color class="; |
|
72 std::cin >> b; |
|
73 int m; |
|
74 std::cout << "number of edges="; |
|
75 std::cin >> m; |
|
76 int k; |
|
77 std::cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n"; |
|
78 std::cout << "number of groups in LEDA random group graph="; |
|
79 std::cin >> k; |
|
80 std::cout << std::endl; |
|
81 |
|
82 leda_list<leda_node> lS; |
|
83 leda_list<leda_node> lT; |
|
84 random_bigraph(lg, a, b, m, lS, lT, k); |
|
85 |
|
86 Graph::NodeMap<int> ref_map(g, -1); |
|
87 IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map); |
|
88 |
|
89 //generating leda random group graph |
|
90 leda_node ln; |
|
91 forall(ln, lS) bipartite_map.insert(ln, false); |
|
92 forall(ln, lT) bipartite_map.insert(ln, true); |
|
93 |
|
94 //making bipartite graph |
|
95 typedef BipartiteGraphWrapper<Graph> BGW; |
|
96 BGW bgw(g, bipartite_map); |
|
97 |
|
98 |
|
99 //st-wrapper |
|
100 typedef stGraphWrapper<BGW> stGW; |
|
101 stGW stgw(bgw); |
|
102 ConstMap<stGW::Edge, int> const1map(1); |
|
103 stGW::EdgeMap<int> flow(stgw); |
|
104 |
|
105 Timer ts; |
|
106 |
|
107 ts.reset(); |
|
108 FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
|
109 MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > |
|
110 max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/); |
|
111 max_flow_test.run(); |
|
112 std::cout << "HUGO max matching algorithm based on preflow." << std::endl |
|
113 << "Size of matching: " |
|
114 << max_flow_test.flowValue() << std::endl; |
|
115 std::cout << "elapsed time: " << ts << std::endl << std::endl; |
|
116 |
|
117 ts.reset(); |
|
118 leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg); |
|
119 std::cout << "LEDA max matching algorithm." << std::endl |
|
120 << "Size of matching: " |
|
121 << ml.size() << std::endl; |
|
122 std::cout << "elapsed time: " << ts << std::endl << std::endl; |
|
123 |
|
124 // ts.reset(); |
|
125 // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0); |
|
126 // typedef ListGraph MutableGraph; |
|
127 // while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { } |
|
128 // std::cout << "HUGO max matching algorithm based on blocking flow augmentation." |
|
129 // << std::endl << "Matching size: " |
|
130 // << max_flow_test.flowValue() << std::endl; |
|
131 // std::cout << "elapsed time: " << ts << std::endl << std::endl; |
|
132 |
|
133 { |
|
134 ListGraph hg; |
|
135 ListGraph::Node s=hg.addNode(); |
|
136 ListGraph::Node t=hg.addNode(); |
|
137 BGW::NodeMap<ListGraph::Node> b_s_nodes(bgw); |
|
138 BGW::NodeMap<ListGraph::Node> b_t_nodes(bgw); |
|
139 |
|
140 FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::S_CLASS) { |
|
141 b_s_nodes.set(n, hg.addNode()); |
|
142 hg.addEdge(s, b_s_nodes[n]); |
|
143 } |
|
144 FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::T_CLASS) { |
|
145 b_t_nodes.set(n, hg.addNode()); |
|
146 hg.addEdge(b_t_nodes[n], t); |
|
147 } |
|
148 |
|
149 FOR_EACH_LOC(BGW::EdgeIt, e, bgw) |
|
150 hg.addEdge(b_s_nodes[bgw.tail(e)], b_t_nodes[bgw.head(e)]); |
|
151 |
|
152 ConstMap<ListGraph::Edge, int> cm(1); |
|
153 ListGraph::EdgeMap<int> flow(hg); //0 |
|
154 |
|
155 Timer ts; |
|
156 |
|
157 ts.reset(); |
|
158 MaxFlow<ListGraph, int, ConstMap<ListGraph::Edge, int>, |
|
159 ListGraph::EdgeMap<int> > |
|
160 max_flow_test(hg, s, t, cm, flow); |
|
161 max_flow_test.run(); |
|
162 std::cout << "HUGO max matching algorithm on ListGraph by copying the graph, based on preflow." |
|
163 << std::endl |
|
164 << "Size of matching: " |
|
165 << max_flow_test.flowValue() << std::endl; |
|
166 std::cout << "elapsed time: " << ts << std::endl << std::endl; |
|
167 } |
|
168 |
|
169 return 0; |
|
170 } |