src/include/fib_heap.h
changeset 369 dc9c19f4ca9a
child 373 259ea2d741a2
equal deleted inserted replaced
-1:000000000000 0:64b1d04ead5a
       
     1 // -*- C++ -*-
       
     2 /*
       
     3  *template <typename Item, 
       
     4  *          typename Prio, 
       
     5  *          typename ItemIntMap, 
       
     6  *          typename Compare = std::less<Prio> >
       
     7  * 
       
     8  *constructors:
       
     9  *
       
    10  *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
       
    11  *
       
    12  *Member functions:
       
    13  *
       
    14  *int size() : returns the number of elements in the heap
       
    15  *
       
    16  *bool empty() : true iff size()=0
       
    17  *
       
    18  *void set(Item, Prio) : calls push(Item, Prio) if Item is not
       
    19  *     in the heap, and calls decrease/increase(Item, Prio) otherwise
       
    20  *
       
    21  *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
       
    22  *     mustn't be in the heap.
       
    23  *
       
    24  *Item top() : returns the Item with least Prio. 
       
    25  *     Must be called only if heap is nonempty.
       
    26  *
       
    27  *Prio prio() : returns the least Prio
       
    28  *     Must be called only if heap is nonempty.
       
    29  *
       
    30  *Prio get(Item) : returns Prio of Item
       
    31  *     Must be called only if Item is in heap.
       
    32  *
       
    33  *void pop() : deletes the Item with least Prio
       
    34  *
       
    35  *void erase(Item) : deletes Item from the heap if it was already there
       
    36  *
       
    37  *void decrease(Item, P) : decreases prio of Item to P. 
       
    38  *     Item must be in the heap with prio at least P.
       
    39  *
       
    40  *void increase(Item, P) : sets prio of Item to P. 
       
    41  *
       
    42  *state_enum state(Item) : returns PRE_HEAP if Item has not been in the 
       
    43  *     heap until now, IN_HEAP if it is in the heap at the moment, and 
       
    44  *     POST_HEAP otherwise. In the latter case it is possible that Item
       
    45  *     will get back to the heap again. 
       
    46  *
       
    47  *In Fibonacci heaps, increase and erase are not efficient, in case of
       
    48  *many calls to these operations, it is better to use bin_heap.
       
    49  */
       
    50 
       
    51 #ifndef FIB_HEAP_H
       
    52 #define FIB_HEAP_H
       
    53 
       
    54 ///\file
       
    55 ///\brief Fibonacci Heap implementation.
       
    56 
       
    57 #include <vector>
       
    58 #include <functional>
       
    59 #include <math.h>
       
    60 
       
    61 namespace hugo {
       
    62   
       
    63   /// A Fibonacci Heap implementation.
       
    64   template <typename Item, typename Prio, typename ItemIntMap, 
       
    65 	    typename Compare = std::less<Prio> >
       
    66   class FibHeap {
       
    67     
       
    68     typedef Prio PrioType;
       
    69     
       
    70     class store;
       
    71     
       
    72     std::vector<store> container;
       
    73     int minimum;
       
    74     ItemIntMap &iimap;
       
    75     Compare comp;
       
    76     int num_items;
       
    77 
       
    78     ///\todo It is use nowhere
       
    79     ///\todo It doesn't conform to the naming conventions.
       
    80   public:
       
    81     enum state_enum {
       
    82       IN_HEAP = 0,
       
    83       PRE_HEAP = -1,
       
    84       POST_HEAP = -2
       
    85     };
       
    86     
       
    87   public :
       
    88     
       
    89     FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} 
       
    90     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), 
       
    91       iimap(_iimap), comp(_comp), num_items() {}
       
    92     
       
    93     
       
    94     int size() const {
       
    95       return num_items; 
       
    96     }
       
    97 
       
    98 
       
    99     bool empty() const { return num_items==0; }
       
   100 
       
   101 
       
   102     void set (Item const it, PrioType const value) {
       
   103       int i=iimap[it];
       
   104       if ( i >= 0 && container[i].in ) {
       
   105 	if ( comp(value, container[i].prio) ) decrease(it, value); 
       
   106 	if ( comp(container[i].prio, value) ) increase(it, value); 
       
   107       } else push(it, value);
       
   108     }
       
   109     
       
   110 
       
   111     void push (Item const it, PrioType const value) {
       
   112       int i=iimap[it];      
       
   113       if ( i < 0 ) {
       
   114 	int s=container.size();
       
   115 	iimap.set( it, s );	
       
   116 	store st;
       
   117 	st.name=it;
       
   118 	container.push_back(st);
       
   119 	i=s;
       
   120       } else {
       
   121 	container[i].parent=container[i].child=-1;
       
   122 	container[i].degree=0;
       
   123 	container[i].in=true;
       
   124 	container[i].marked=false;
       
   125       }
       
   126 
       
   127       if ( num_items ) {
       
   128 	container[container[minimum].right_neighbor].left_neighbor=i;
       
   129 	container[i].right_neighbor=container[minimum].right_neighbor;
       
   130 	container[minimum].right_neighbor=i;
       
   131 	container[i].left_neighbor=minimum;
       
   132 	if ( comp( value, container[minimum].prio) ) minimum=i; 
       
   133       } else {
       
   134 	container[i].right_neighbor=container[i].left_neighbor=i;
       
   135 	minimum=i;	
       
   136       }
       
   137       container[i].prio=value;
       
   138       ++num_items;
       
   139     }
       
   140     
       
   141 
       
   142     Item top() const {
       
   143       return container[minimum].name;
       
   144     }
       
   145     
       
   146     
       
   147     PrioType prio() const {
       
   148       return container[minimum].prio;
       
   149     }
       
   150     
       
   151 
       
   152 
       
   153 
       
   154     PrioType& operator[](const Item& it) {
       
   155       return container[iimap[it]].prio;
       
   156     }
       
   157     
       
   158     const PrioType& operator[](const Item& it) const {
       
   159       return container[iimap[it]].prio;
       
   160     }
       
   161 
       
   162 //     const PrioType get(const Item& it) const {
       
   163 //       return container[iimap[it]].prio;
       
   164 //     }
       
   165 
       
   166     void pop() {
       
   167       /*The first case is that there are only one root.*/
       
   168       if ( container[minimum].left_neighbor==minimum ) {
       
   169 	container[minimum].in=false;
       
   170 	if ( container[minimum].degree!=0 ) { 
       
   171 	  makeroot(container[minimum].child);
       
   172 	  minimum=container[minimum].child;
       
   173 	  balance();
       
   174 	}
       
   175       } else {
       
   176 	int right=container[minimum].right_neighbor;
       
   177 	unlace(minimum);
       
   178 	container[minimum].in=false;
       
   179 	if ( container[minimum].degree > 0 ) {
       
   180 	  int left=container[minimum].left_neighbor;
       
   181 	  int child=container[minimum].child;
       
   182 	  int last_child=container[child].left_neighbor;
       
   183 	
       
   184 	  makeroot(child);
       
   185 	  
       
   186 	  container[left].right_neighbor=child;
       
   187 	  container[child].left_neighbor=left;
       
   188 	  container[right].left_neighbor=last_child;
       
   189 	  container[last_child].right_neighbor=right;
       
   190 	}
       
   191 	minimum=right;
       
   192 	balance();
       
   193       } // the case where there are more roots
       
   194       --num_items;   
       
   195     }
       
   196 
       
   197     
       
   198     void erase (const Item& it) {
       
   199       int i=iimap[it];
       
   200       
       
   201       if ( i >= 0 && container[i].in ) { 	
       
   202 	if ( container[i].parent!=-1 ) {
       
   203 	  int p=container[i].parent;
       
   204 	  cut(i,p);	    
       
   205 	  cascade(p);
       
   206 	}
       
   207 	minimum=i;     //As if its prio would be -infinity
       
   208 	pop();
       
   209       }
       
   210     }
       
   211     
       
   212 
       
   213     void decrease (Item it, PrioType const value) {
       
   214       int i=iimap[it];
       
   215       container[i].prio=value;
       
   216       int p=container[i].parent;
       
   217       
       
   218       if ( p!=-1 && comp(value, container[p].prio) ) {
       
   219 	cut(i,p);	    
       
   220 	cascade(p);
       
   221       }      
       
   222       if ( comp(value, container[minimum].prio) ) minimum=i; 
       
   223     }
       
   224    
       
   225 
       
   226     void increase (Item it, PrioType const value) {
       
   227       erase(it);
       
   228       push(it, value);
       
   229     }
       
   230 
       
   231 
       
   232     state_enum state(const Item &it) const {
       
   233       int i=iimap[it];
       
   234       if( i>=0 ) {
       
   235 	if ( container[i].in ) i=0;
       
   236 	else i=-2; 
       
   237       }
       
   238       return state_enum(i);
       
   239     }
       
   240 
       
   241 
       
   242   private:
       
   243     
       
   244     void balance() {      
       
   245 
       
   246     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
       
   247   
       
   248     std::vector<int> A(maxdeg,-1); 
       
   249     
       
   250     /*
       
   251      *Recall that now minimum does not point to the minimum prio element.
       
   252      *We set minimum to this during balance().
       
   253      */
       
   254     int anchor=container[minimum].left_neighbor; 
       
   255     int next=minimum; 
       
   256     bool end=false; 
       
   257     	
       
   258        do {
       
   259 	int active=next;
       
   260 	if ( anchor==active ) end=true;
       
   261 	int d=container[active].degree;
       
   262 	next=container[active].right_neighbor;
       
   263 
       
   264 	while (A[d]!=-1) {	  
       
   265 	  if( comp(container[active].prio, container[A[d]].prio) ) {
       
   266 	    fuse(active,A[d]); 
       
   267 	  } else { 
       
   268 	    fuse(A[d],active);
       
   269 	    active=A[d];
       
   270 	  } 
       
   271 	  A[d]=-1;
       
   272 	  ++d;
       
   273 	}	
       
   274 	A[d]=active;
       
   275        } while ( !end );
       
   276 
       
   277 
       
   278        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
       
   279        int s=minimum;
       
   280        int m=minimum;
       
   281        do {  
       
   282 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
       
   283 	 s=container[s].right_neighbor;
       
   284        } while ( s != m );
       
   285     }
       
   286 
       
   287 
       
   288     void makeroot (int c) {
       
   289       int s=c;
       
   290       do {  
       
   291 	container[s].parent=-1;
       
   292 	s=container[s].right_neighbor;
       
   293       } while ( s != c );
       
   294     }
       
   295     
       
   296 
       
   297     void cut (int a, int b) {    
       
   298       /*
       
   299        *Replacing a from the children of b.
       
   300        */
       
   301       --container[b].degree;
       
   302       
       
   303       if ( container[b].degree !=0 ) {
       
   304 	int child=container[b].child;
       
   305 	if ( child==a ) 
       
   306 	  container[b].child=container[child].right_neighbor;
       
   307 	unlace(a);
       
   308       }
       
   309       
       
   310       
       
   311       /*Lacing a to the roots.*/
       
   312       int right=container[minimum].right_neighbor;
       
   313       container[minimum].right_neighbor=a;
       
   314       container[a].left_neighbor=minimum;
       
   315       container[a].right_neighbor=right;
       
   316       container[right].left_neighbor=a;
       
   317 
       
   318       container[a].parent=-1;
       
   319       container[a].marked=false;
       
   320     }
       
   321 
       
   322 
       
   323     void cascade (int a) 
       
   324     {
       
   325       if ( container[a].parent!=-1 ) {
       
   326 	int p=container[a].parent;
       
   327 	
       
   328 	if ( container[a].marked==false ) container[a].marked=true;
       
   329 	else {
       
   330 	  cut(a,p);
       
   331 	  cascade(p);
       
   332 	}
       
   333       }
       
   334     }
       
   335 
       
   336 
       
   337     void fuse (int a, int b) {
       
   338       unlace(b);
       
   339       
       
   340       /*Lacing b under a.*/
       
   341       container[b].parent=a;
       
   342 
       
   343       if (container[a].degree==0) {
       
   344 	container[b].left_neighbor=b;
       
   345 	container[b].right_neighbor=b;
       
   346 	container[a].child=b;	
       
   347       } else {
       
   348 	int child=container[a].child;
       
   349 	int last_child=container[child].left_neighbor;
       
   350 	container[child].left_neighbor=b;
       
   351 	container[b].right_neighbor=child;
       
   352 	container[last_child].right_neighbor=b;
       
   353 	container[b].left_neighbor=last_child;
       
   354       }
       
   355 
       
   356       ++container[a].degree;
       
   357       
       
   358       container[b].marked=false;
       
   359     }
       
   360 
       
   361 
       
   362     /*
       
   363      *It is invoked only if a has siblings.
       
   364      */
       
   365     void unlace (int a) {      
       
   366       int leftn=container[a].left_neighbor;
       
   367       int rightn=container[a].right_neighbor;
       
   368       container[leftn].right_neighbor=rightn;
       
   369       container[rightn].left_neighbor=leftn;
       
   370     }
       
   371 
       
   372 
       
   373     class store {
       
   374       friend class FibHeap;
       
   375       
       
   376       Item name;
       
   377       int parent;
       
   378       int left_neighbor;
       
   379       int right_neighbor;
       
   380       int child;
       
   381       int degree;  
       
   382       bool marked;
       
   383       bool in;
       
   384       PrioType prio;
       
   385 
       
   386       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
       
   387     };
       
   388     
       
   389   };
       
   390   
       
   391 } //namespace hugo
       
   392 #endif