lemon/simann.h
changeset 1923 e1b0ef823e9e
parent 1847 7cbc12e42482
child 1932 c65711e5a26d
equal deleted inserted replaced
1:77108763592a 2:6933d6353745
     9 /// \todo Doc should be improved
     9 /// \todo Doc should be improved
    10 /// \author Akos Ladanyi
    10 /// \author Akos Ladanyi
    11 
    11 
    12 #include <cstdlib>
    12 #include <cstdlib>
    13 #include <cmath>
    13 #include <cmath>
       
    14 #include <limits>
    14 #include <lemon/time_measure.h>
    15 #include <lemon/time_measure.h>
    15 
    16 
    16 namespace lemon {
    17 namespace lemon {
    17 
    18 
    18 /// \addtogroup experimental
    19 /// \addtogroup experimental
    19 /// @{
    20 /// @{
    20 
    21 
    21   /*! \brief A base class for controllers. */
    22   /// \brief A base class for controllers.
    22   class ControllerBase {
    23   class ControllerBase {
       
    24   public:
    23     friend class SimAnnBase;
    25     friend class SimAnnBase;
    24   public:
    26     /// \brief Pointer to the simulated annealing base class.
    25     /*! \brief Pointer to the simulated annealing base class. */
       
    26     SimAnnBase *simann;
    27     SimAnnBase *simann;
    27     /*! \brief Initializes the controller. */
    28     /// \brief Initializes the controller.
    28     virtual void init() {}
    29     virtual void init() {}
    29     /*! \brief This is called when a neighbouring state gets accepted. */
    30     /// \brief This is called by the simulated annealing class when a
       
    31     /// neighbouring state gets accepted.
    30     virtual void acceptEvent() {}
    32     virtual void acceptEvent() {}
    31     /*! \brief This is called when the accepted neighbouring state's cost is
    33     /// \brief This is called by the simulated annealing class when the
    32      *  less than the best found one's.
    34     /// accepted neighbouring state's cost is less than the best found one's.
    33      */
       
    34     virtual void improveEvent() {}
    35     virtual void improveEvent() {}
    35     /*! \brief This is called when a neighbouring state gets rejected. */
    36     /// \brief This is called by the simulated annealing class when a
       
    37     /// neighbouring state gets rejected.
    36     virtual void rejectEvent() {}
    38     virtual void rejectEvent() {}
    37     /*! \brief Decides whether to continue the annealing process or not. */
    39     /// \brief Decides whether to continue the annealing process or not.
    38     virtual bool next() = 0;
    40     virtual bool next() = 0;
    39     /*! \brief Decides whether to accept the current solution or not. */
    41     /// \brief Decides whether to accept the current solution or not.
    40     virtual bool accept() = 0;
    42     virtual bool accept() = 0;
    41   };
    43     /// \brief Destructor.
    42 
    44     virtual ~ControllerBase() {}
    43   /*! \brief Skeleton of an entity class. */
    45   };
       
    46 
       
    47   /// \brief Skeleton of an entity class.
    44   class EntityBase {
    48   class EntityBase {
    45   public:
    49   public:
    46     /*! \brief Makes a minor change to the entity.
    50     /// \brief Makes a minor change to the entity.
    47      *  \return the new cost
    51     /// \return the new cost
    48      */
       
    49     virtual double mutate() = 0;
    52     virtual double mutate() = 0;
    50     /*! \brief Restores the entity to its previous state i.e. reverts the
    53     /// \brief Restores the entity to its previous state i.e. reverts the
    51      *  effects of the last mutate().
    54     /// effects of the last mutate().
    52      */
       
    53     virtual void revert() = 0;
    55     virtual void revert() = 0;
    54     /*! \brief Makes a copy of the entity. */
    56     /// \brief Makes a copy of the entity.
    55     virtual EntityBase* clone() = 0;
    57     virtual EntityBase* clone() = 0;
    56     /*! \brief Makes a major change to the entity. */
    58     /// \brief Makes a major change to the entity.
    57     virtual void randomize() = 0;
    59     virtual void randomize() = 0;
    58   };
    60     /// \brief Destructor.
    59 
    61     virtual ~EntityBase() {}
    60   /*! \brief Simulated annealing base class. */
    62   };
       
    63 
       
    64   /// \brief Simulated annealing abstract base class.
       
    65   /// Can be used to derive a custom simulated annealing class if \ref SimAnn
       
    66   /// doesn't fit your needs.
    61   class SimAnnBase {
    67   class SimAnnBase {
    62   private:
    68   private:
    63     /*! Pointer to the controller. */
    69     /// \brief Pointer to the controller.
    64     ControllerBase *controller;
    70     ControllerBase *controller;
    65     /*! \brief Cost of the current solution. */
    71     /// \brief Cost of the current solution.
    66     double curr_cost;
    72     double curr_cost;
    67     /*! \brief Cost of the best solution. */
    73     /// \brief Cost of the best solution.
    68     double best_cost;
    74     double best_cost;
    69     /*! \brief Cost of the previous solution. */
    75     /// \brief Cost of the previous solution.
    70     double prev_cost;
    76     double prev_cost;
    71     /*! \brief Cost of the solution preceding the previous one. */
    77     /// \brief Cost of the solution preceding the previous one.
    72     double prev_prev_cost;
    78     double prev_prev_cost;
    73     /*! \brief Number of iterations. */
    79     /// \brief Number of iterations.
    74     long iter;
    80     long iter;
    75     /*! \brief Number of iterations which did not improve the solution since
    81     /// \brief Number of iterations which did not improve the solution since
    76      *  the last improvement. */
    82     /// the last improvement.
    77     long last_impr;
    83     long last_impr;
    78   protected:
    84   protected:
    79     /*! \brief Step to a neighbouring state. */
    85     /// \brief Step to a neighbouring state.
    80     virtual double mutate() = 0;
    86     virtual double mutate() = 0;
    81     /*! \brief Reverts the last mutate(). */
    87     /// \brief Reverts the last mutate().
    82     virtual void revert() = 0;
    88     virtual void revert() = 0;
    83     /*! \brief Saves the current solution as the best one. */
    89     /// \brief Saves the current solution as the best one.
    84     virtual void saveAsBest() = 0;
    90     virtual void saveAsBest() = 0;
    85     /*! \brief Does initializations before each run. */
    91     /// \brief Does initializations before each run.
    86     virtual void init() {
    92     virtual void init() {
    87       controller->init();
    93       controller->init();
    88       curr_cost = prev_cost = prev_prev_cost = best_cost =
    94       curr_cost = prev_cost = prev_prev_cost = best_cost =
    89         std::numeric_limits<double>::infinity();
    95         std::numeric_limits<double>::infinity();
    90       iter = last_impr = 0;
    96       iter = last_impr = 0;
    91     }
    97     }
    92   public:
    98   public:
    93     /*! \brief Sets the controller class to use. */
    99     /// \brief Sets the controller class to use.
    94     void setController(ControllerBase &_controller) {
   100     void setController(ControllerBase &_controller) {
    95       controller = &_controller;
   101       controller = &_controller;
    96       controller->simann = this;
   102       controller->simann = this;
    97     }
   103     }
    98     /*! \brief Returns the cost of the current solution. */
   104     /// \brief Returns the cost of the current solution.
    99     double getCurrCost() const { return curr_cost; }
   105     double getCurrCost() const { return curr_cost; }
   100     /*! \brief Returns the cost of the previous solution. */
   106     /// \brief Returns the cost of the previous solution.
   101     double getPrevCost() const { return prev_cost; }
   107     double getPrevCost() const { return prev_cost; }
   102     /*! \brief Returns the cost of the best solution. */
   108     /// \brief Returns the cost of the best solution.
   103     double getBestCost() const { return best_cost; }
   109     double getBestCost() const { return best_cost; }
   104     /*! \brief Returns the number of iterations. */
   110     /// \brief Returns the number of iterations done.
   105     long getIter() const { return iter; }
   111     long getIter() const { return iter; }
   106     /*! \brief Returns the number of the last iteration when the solution was
   112     /// \brief Returns the ordinal number of the last iteration when the
   107      *  improved.
   113     /// solution was improved.
   108      */
       
   109     long getLastImpr() const { return last_impr; }
   114     long getLastImpr() const { return last_impr; }
   110     /*! \brief Performs one iteration. */
   115     /// \brief Performs one iteration.
   111     bool step() {
   116     bool step() {
   112       iter++;
   117       iter++;
   113       prev_prev_cost = prev_cost;
   118       prev_prev_cost = prev_cost;
   114       prev_cost = curr_cost;
   119       prev_cost = curr_cost;
   115       curr_cost = mutate();
   120       curr_cost = mutate();
   128         prev_cost = prev_prev_cost;
   133         prev_cost = prev_prev_cost;
   129         controller->rejectEvent();
   134         controller->rejectEvent();
   130       }
   135       }
   131       return controller->next();
   136       return controller->next();
   132     }
   137     }
   133     /*! \brief Performs a given number of iterations.
   138     /// \brief Performs a given number of iterations.
   134      *  \param n the number of iterations
   139     /// \param n the number of iterations
   135      */
       
   136     bool step(int n) {
   140     bool step(int n) {
   137       for(; n > 0 && step(); --n) ;
   141       for(; n > 0 && step(); --n) ;
   138       return !n;
   142       return !n;
   139     }
   143     }
   140     /*! \brief Starts the annealing process. */
   144     /// \brief Starts the annealing process.
   141     void run() {
   145     void run() {
   142       init();
   146       init();
   143       do { } while (step());
   147       do { } while (step());
   144     }
   148     }
   145   };
   149     /// \brief Destructor.
   146 
   150     virtual ~SimAnnBase() {}
   147   /*! \brief Simulated annealing class. */
   151   };
       
   152 
       
   153   /// \brief Simulated annealing class.
   148   class SimAnn : public SimAnnBase {
   154   class SimAnn : public SimAnnBase {
   149   private:
   155   private:
   150     /*! \brief Pointer to the current entity. */
   156     /// \brief Pointer to the current entity.
   151     EntityBase *curr_ent;
   157     EntityBase *curr_ent;
   152     /*! \brief Pointer to the best entity. */
   158     /// \brief Pointer to the best entity.
   153     EntityBase *best_ent;
   159     EntityBase *best_ent;
   154     /*! \brief Does initializations before each run. */
   160     /// \brief Does initializations before each run.
   155     void init() {
   161     void init() {
   156       SimAnnBase::init();
   162       SimAnnBase::init();
   157       if (best_ent) delete best_ent;
   163       if (best_ent) delete best_ent;
   158       best_ent = NULL;
   164       best_ent = NULL;
   159       curr_ent->randomize();
   165       curr_ent->randomize();
   160     }
   166     }
   161   public:
   167   public:
   162     /*! \brief Constructor. */
   168     /// \brief Constructor.
   163     SimAnn() : curr_ent(NULL), best_ent(NULL) {}
   169     SimAnn() : curr_ent(NULL), best_ent(NULL) {}
   164     /*! \brief Destructor. */
   170     /// \brief Destructor.
   165     virtual ~SimAnn() {
   171     virtual ~SimAnn() {
   166       if (best_ent) delete best_ent;
   172       if (best_ent) delete best_ent;
   167     }
   173     }
   168     /*! \brief Step to a neighbouring state. */
   174     /// \brief Step to a neighbouring state.
   169     double mutate() {
   175     double mutate() {
   170       return curr_ent->mutate();
   176       return curr_ent->mutate();
   171     }
   177     }
   172     /*! \brief Reverts the last mutate(). */
   178     /// \brief Reverts the last mutate().
   173     void revert() {
   179     void revert() {
   174       curr_ent->revert();
   180       curr_ent->revert();
   175     }
   181     }
   176     /*! \brief Saves the current solution as the best one. */
   182     /// \brief Saves the current solution as the best one.
   177     void saveAsBest() { 
   183     void saveAsBest() { 
   178       if (best_ent) delete best_ent;
   184       if (best_ent) delete best_ent;
   179       best_ent = curr_ent->clone();
   185       best_ent = curr_ent->clone();
   180     }
   186     }
   181     /*! \brief Sets the current entity. */
   187     /// \brief Sets the current entity.
   182     void setEntity(EntityBase &_ent) {
   188     void setEntity(EntityBase &_ent) {
   183       curr_ent = &_ent;
   189       curr_ent = &_ent;
   184     }
   190     }
   185     /*! \brief Returns a copy of the best found entity. */
   191     /// \brief Returns a copy of the best found entity.
   186     EntityBase* getBestEntity() { return best_ent->clone(); }
   192     EntityBase* getBestEntity() { return best_ent->clone(); }
   187   };
   193   };
   188 
   194 
   189   /*! \brief A simple controller for the simulated annealing class. */
   195   /// \brief A simple controller for the simulated annealing class.
       
   196   /// This controller starts from a given initial temperature and evenly
       
   197   /// decreases it.
   190   class SimpleController : public ControllerBase {
   198   class SimpleController : public ControllerBase {
   191   public:
   199   private:
   192     /*! \brief Maximum number of iterations. */
   200     /// \brief Maximum number of iterations.
   193     long max_iter;
   201     long max_iter;
   194     /*! \brief Maximum number of iterations which do not improve the
   202     /// \brief Maximum number of iterations which do not improve the
   195      *  solution. */
   203     /// solution.
   196     long max_no_impr;
   204     long max_no_impr;
   197     /*! \brief Temperature. */
   205     /// \brief Temperature.
   198     double temp;
   206     double temp;
   199     /*! \brief Annealing factor. */
   207     /// \brief Annealing factor.
   200     double ann_fact;
   208     double ann_fact;
   201     /*! \brief Constructor.
   209     /// \brief Constructor.
   202      *  \param _max_iter maximum number of iterations
   210     /// \param _max_iter maximum number of iterations
   203      *  \param _max_no_impr maximum number of consecutive iterations which do
   211     /// \param _max_no_impr maximum number of consecutive iterations which do
   204      *         not yield a better solution
   212     ///        not yield a better solution
   205      *  \param _temp initial temperature
   213     /// \param _temp initial temperature
   206      *  \param _ann_fact annealing factor
   214     /// \param _ann_fact annealing factor
   207      */
   215   public:
   208     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   216     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   209     double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
   217     double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
   210       max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
   218       max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
   211     {
   219     {
   212       srand48(time(0));
   220       srand48(time(0));
   213     }
   221     }
   214     /*! \brief This is called when a neighbouring state gets accepted. */
   222     /// \brief This is called when a neighbouring state gets accepted.
   215     void acceptEvent() {}
   223     void acceptEvent() {}
   216     /*! \brief This is called when the accepted neighbouring state's cost is
   224     /// \brief This is called when the accepted neighbouring state's cost is
   217      *  less than the best found one's.
   225     /// less than the best found one's.
   218      */
       
   219     void improveEvent() {}
   226     void improveEvent() {}
   220     /*! \brief This is called when a neighbouring state gets rejected. */
   227     /// \brief This is called when a neighbouring state gets rejected.
   221     void rejectEvent() {}
   228     void rejectEvent() {}
   222     /*! \brief Decides whether to continue the annealing process or not. Also
   229     /// \brief Decides whether to continue the annealing process or not. Also
   223      *  decreases the temperature. */
   230     /// decreases the temperature.
   224     bool next() {
   231     bool next() {
   225       temp *= ann_fact;
   232       temp *= ann_fact;
   226       bool quit = (simann->getIter() > max_iter) ||
   233       bool quit = (simann->getIter() > max_iter) ||
   227         (simann->getIter() - simann->getLastImpr() > max_no_impr);
   234         (simann->getIter() - simann->getLastImpr() > max_no_impr);
   228       return !quit;
   235       return !quit;
   229     }
   236     }
   230     /*! \brief Decides whether to accept the current solution or not. */
   237     /// \brief Decides whether to accept the current solution or not.
   231     bool accept() {
   238     bool accept() {
   232       double cost_diff = simann->getPrevCost() - simann->getCurrCost();
   239       double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   233       return (drand48() <= exp(cost_diff / temp));
   240       return (drand48() <= exp(-(cost_diff / temp)));
   234     }
   241     }
   235   };
   242     /// \brief Destructor.
   236 
   243     virtual ~SimpleController() {}
   237   /*! \brief A controller with preset running time for the simulated annealing
   244   };
   238    *  class.
   245 
   239    *
   246   /// \brief A controller with preset running time for the simulated annealing
   240    *  With this controller you can set the running time of the annealing
   247   /// class.
   241    *  process in advance. It works the following way: the controller measures
   248   /// With this controller you can set the running time of the annealing
   242    *  a kind of divergence. The divergence is the difference of the average
   249   /// process in advance. It works the following way: the controller measures
   243    *  cost of the recently found solutions the cost of the best found one. In
   250   /// a kind of divergence. The divergence is the difference of the average
   244    *  case this divergence is greater than a given threshold, then we decrease
   251   /// cost of the recently found solutions the cost of the best found one. In
   245    *  the annealing factor, that is we cool the system faster. In case the
   252   /// case this divergence is greater than a given threshold, then we decrease
   246    *  divergence is lower than the threshold, then we increase the temperature.
   253   /// the annealing factor, that is we cool the system faster. In case the
   247    *  The threshold is a function of the elapsed time which reaches zero at the
   254   /// divergence is lower than the threshold, then we increase the temperature.
   248    *  desired end time.
   255   /// The threshold is a function of the elapsed time which reaches zero at the
   249    */
   256   /// desired end time.
   250   class AdvancedController : public ControllerBase {
   257   class AdvancedController : public ControllerBase {
   251   private:
   258   private:
       
   259     /// \brief Timer class to measure the elapsed time.
   252     Timer timer;
   260     Timer timer;
   253     /*! \param time the elapsed time in seconds */
   261     /// \brief Calculates the threshold value.
       
   262     /// \param time the elapsed time in seconds
   254     virtual double threshold(double time) {
   263     virtual double threshold(double time) {
   255       return (-1.0) * start_threshold / end_time * time + start_threshold;
   264       return (-1.0) * start_threshold / end_time * time + start_threshold;
   256     }
   265     }
   257   public:
   266     /// \brief Parameter used to calculate the running average.
   258     double alpha;
   267     double alpha;
       
   268     /// \brief Parameter used to decrease the annealing factor.
   259     double beta;
   269     double beta;
       
   270     /// \brief Parameter used to increase the temperature.
   260     double gamma;
   271     double gamma;
   261     /*! \brief The time at the end of the algorithm. */
   272     /// \brief The time at the end of the algorithm.
   262     double end_time;
   273     double end_time;
   263     /*! \brief The time at the start of the algorithm. */
   274     /// \brief The time at the start of the algorithm.
   264     double start_time;
   275     double start_time;
   265     /*! \brief Starting threshold. */
   276     /// \brief Starting threshold.
   266     double start_threshold;
   277     double start_threshold;
   267     /*! \brief Average cost of recent solutions. */
   278     /// \brief Average cost of recent solutions.
   268     double avg_cost;
   279     double avg_cost;
   269     /*! \brief Temperature. */
   280     /// \brief Temperature.
   270     double temp;
   281     double temp;
   271     /*! \brief Annealing factor. */
   282     /// \brief Annealing factor.
   272     double ann_fact;
   283     double ann_fact;
   273     /*! \brief Initial annealing factor. */
   284     /// \brief Initial annealing factor.
   274     double init_ann_fact;
   285     double init_ann_fact;
   275     bool warmup;
   286     /// \brief True when the annealing process has been started.
   276     /*! \brief Constructor.
   287     bool start;
   277      *  \param _end_time running time in seconds
   288   public:
   278      *  \param _alpha parameter used to calculate the running average
   289     /// \brief Constructor.
   279      *  \param _beta parameter used to decrease the annealing factor
   290     /// \param _end_time running time in seconds
   280      *  \param _gamma parameter used to increase the temperature
   291     /// \param _alpha parameter used to calculate the running average
   281      *  \param _ann_fact initial annealing factor
   292     /// \param _beta parameter used to decrease the annealing factor
   282      */
   293     /// \param _gamma parameter used to increase the temperature
       
   294     /// \param _ann_fact initial annealing factor
   283     AdvancedController(double _end_time, double _alpha = 0.2,
   295     AdvancedController(double _end_time, double _alpha = 0.2,
   284     double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
   296     double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
   285     alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
   297     alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
   286     ann_fact(_ann_fact), init_ann_fact(_ann_fact), warmup(true)
   298     ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
   287     {
   299     {
   288       srand48(time(0));
   300       srand48(time(0));
   289     }
   301     }
       
   302     /// \brief Does initializations before each run.
   290     void init() {
   303     void init() {
   291       avg_cost = simann->getCurrCost();
   304       avg_cost = simann->getCurrCost();
   292     }
   305     }
   293     /*! \brief This is called when a neighbouring state gets accepted. */
   306     /// \brief This is called when a neighbouring state gets accepted.
   294     void acceptEvent() {
   307     void acceptEvent() {
   295       avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
   308       avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
   296       if (warmup) {
   309       if (!start) {
   297         static int cnt = 0;
   310         static int cnt = 0;
   298         cnt++;
   311         cnt++;
   299         if (cnt >= 100) {
   312         if (cnt >= 100) {
   300           // calculate starting threshold and starting temperature
   313           // calculate starting threshold and starting temperature
   301           start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
   314           start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
   302           temp = 10000.0;
   315           temp = 10000.0;
   303           warmup = false;
   316           start = true;
   304           timer.restart();
   317           timer.restart();
   305         }
   318         }
   306       }
   319       }
   307     }
   320     }
   308     /*! \brief Decides whether to continue the annealing process or not. */
   321     /// \brief Decides whether to continue the annealing process or not.
   309     bool next() {
   322     bool next() {
   310       if (warmup) {
   323       if (!start) {
   311         return true;
   324         return true;
   312       }
   325       }
   313       else {
   326       else {
   314         double elapsed_time = timer.getRealTime();
   327         double elapsed_time = timer.realTime();
   315         if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
   328         if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
   316           // decrease the annealing factor
   329           // decrease the annealing factor
   317           ann_fact *= beta;
   330           ann_fact *= beta;
   318         }
   331         }
   319         else {
   332         else {
   324         }
   337         }
   325         temp *= ann_fact;
   338         temp *= ann_fact;
   326         return elapsed_time < end_time;
   339         return elapsed_time < end_time;
   327       }
   340       }
   328     }
   341     }
   329     /*! \brief Decides whether to accept the current solution or not. */
   342     /// \brief Decides whether to accept the current solution or not.
   330     bool accept() {
   343     bool accept() {
   331       if (warmup) {
   344       if (!start) {
   332         // we accept eveything during the "warm up" phase
       
   333         return true;
   345         return true;
   334       }
   346       }
   335       else {
   347       else {
   336         double cost_diff = simann->getPrevCost() - simann->getCurrCost();
   348         double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   337         if (cost_diff < 0.0) {
   349         return (drand48() <= exp(-(cost_diff / temp)));
   338           return (drand48() <= exp(cost_diff / temp));
   350       }
   339         }
   351     }
   340         else {
   352     /// \brief Destructor.
   341           return true;
   353     virtual ~AdvancedController() {}
   342         }
       
   343       }
       
   344     }
       
   345   };
   354   };
   346 
   355 
   347 /// @}
   356 /// @}
   348 
   357 
   349 }
   358 }