src/work/athos/preflow_push.hh
changeset 96 e2e18eb0fd10
parent 36 7d539ea6ad26
child 105 a3c73e9b9b2e
equal deleted inserted replaced
0:5a721b2fe626 1:bf79ebbdb5ea
     4 #include <algorithm>
     4 #include <algorithm>
     5 #include <list>
     5 #include <list>
     6 #include <vector>
     6 #include <vector>
     7 //#include "pf_hiba.hh"
     7 //#include "pf_hiba.hh"
     8 //#include <marci_list_graph.hh>
     8 //#include <marci_list_graph.hh>
     9 #include <marci_graph_traits.hh>
     9 //#include <marci_graph_traits.hh>
       
    10 
    10 #include "reverse_bfs.hh"
    11 #include "reverse_bfs.hh"
    11 
    12 
    12 using namespace std;
    13 using namespace std;
    13 
    14 
    14 namespace marci {
    15 namespace marci {
    15 
    16 
    16   template <typename graph_type, typename T>
    17   template <typename graph_type, typename T>
    17   class preflow_push {
    18   class preflow_push {
    18 
    19 
    19     //Hasznos typedef-ek
    20     //Hasznos typedef-ek
       
    21     typedef typename graph_type::NodeIt NodeIt;
       
    22     typedef typename graph_type::EdgeIt EdgeIt;
       
    23     typedef typename graph_type::EachNodeIt EachNodeIt;
       
    24     typedef typename graph_type::EachEdgeIt EachEdgeIt;
       
    25     typedef typename graph_type::OutEdgeIt OutEdgeIt;
       
    26     typedef typename graph_type::InEdgeIt InEdgeIt;
       
    27     typedef typename graph_type::SymEdgeIt SymEdgeIt;
       
    28 
       
    29 
       
    30 
       
    31     /*
    20     typedef graph_traits<graph_type>::node_iterator node_iterator;
    32     typedef graph_traits<graph_type>::node_iterator node_iterator;
    21     typedef graph_traits<graph_type>::edge_iterator edge_iterator;
    33     typedef graph_traits<graph_type>::EdgeIt EdgeIt;
    22     typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
    34     typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
    23     typedef graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
    35     typedef graph_traits<graph_type>::each_EdgeIt each_EdgeIt;
    24     typedef graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    36     typedef graph_traits<graph_type>::out_EdgeIt out_EdgeIt;
    25     typedef graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
    37     typedef graph_traits<graph_type>::InEdgeIt InEdgeIt;
    26     typedef graph_traits<graph_type>::sym_edge_iterator sym_edge_iterator;
    38     typedef graph_traits<graph_type>::sym_EdgeIt sym_EdgeIt;
       
    39     */
    27 
    40 
    28     //---------------------------------------------
    41     //---------------------------------------------
    29     //Parameters of the algorithm
    42     //Parameters of the algorithm
    30     //---------------------------------------------
    43     //---------------------------------------------
    31     //Fully examine an active node until excess becomes 0
    44     //Fully examine an active node until excess becomes 0
    41     //---------------------------------------------
    54     //---------------------------------------------
    42  
    55  
    43   private:
    56   private:
    44     //input
    57     //input
    45     graph_type& G;
    58     graph_type& G;
    46     node_iterator s;
    59     NodeIt s;
    47     node_iterator t;
    60     NodeIt t;
    48     edge_property_vector<graph_type, T> &capacity;
    61     typename graph_type::EdgeMap<T> &capacity;
       
    62     //typename graph_type::EdgeMap<T>  &capacity;
    49     //output
    63     //output
    50     edge_property_vector<graph_type, T> preflow;
    64     //typename graph_type::EdgeMap<T>  
       
    65     typename graph_type::EdgeMap<T> preflow;
    51     T maxflow_value;
    66     T maxflow_value;
    52   
    67   
    53     //auxiliary variables for computation
    68     //auxiliary variables for computation
    54     int number_of_nodes;
    69     int number_of_nodes;
    55     node_property_vector<graph_type, int> level;
    70     
    56     node_property_vector<graph_type, T> excess;
    71     
       
    72     typename graph_type::NodeMap<int> level;
       
    73     typename graph_type::NodeMap<T> excess;
       
    74     //node_property_vector<graph_type, int> level;
       
    75     //node_property_vector<graph_type, T> excess;
    57     
    76     
    58     //Number of nodes on each level
    77     //Number of nodes on each level
    59     vector<int> num_of_nodes_on_level;
    78     vector<int> num_of_nodes_on_level;
    60     
    79     
    61     //For the FIFO implementation
    80     //For the FIFO implementation
    62     list<node_iterator> fifo_nodes;
    81     list<NodeIt> fifo_nodes;
    63     //For 'highest label' implementation
    82     //For 'highest label' implementation
    64     int highest_active;
    83     int highest_active;
    65     //int second_highest_active;
    84     //int second_highest_active;
    66     vector< list<node_iterator> > active_nodes;
    85     vector< list<NodeIt> > active_nodes;
    67 
    86 
    68   public:
    87   public:
    69   
    88   
    70     //Constructing the object using the graph, source, sink and capacity vector
    89     //Constructing the object using the graph, source, sink and capacity vector
    71     preflow_push(
    90     preflow_push(
    72 		      graph_type& _G, 
    91 		      graph_type& _G, 
    73 		      node_iterator _s, 
    92 		      NodeIt _s, 
    74 		      node_iterator _t, 
    93 		      NodeIt _t, 
    75 		      edge_property_vector<graph_type, T>& _capacity)
    94 		      typename graph_type::EdgeMap<T> & _capacity)
    76       : G(_G), s(_s), t(_t), 
    95       : G(_G), s(_s), t(_t), 
    77 	capacity(_capacity), 
    96 	capacity(_capacity), 
    78 	preflow(_G),
    97 	preflow(_G),
    79 	//Counting the number of nodes
    98 	//Counting the number of nodes
    80 	number_of_nodes(number_of(G.first_node())),
    99 	//number_of_nodes(count(G.first<EachNodeIt>())),
       
   100 	number_of_nodes(G.nodeNum()),
       
   101 
    81 	level(_G),
   102 	level(_G),
    82 	excess(_G)//,
   103 	excess(_G)//,
    83         // Default constructor: active_nodes()
   104         // Default constructor: active_nodes()
    84     { 
   105     { 
    85       //Simplest parameter settings
   106       //Simplest parameter settings
   104     }
   125     }
   105 
   126 
   106     //Returns the value of a maximal flow 
   127     //Returns the value of a maximal flow 
   107     T run();
   128     T run();
   108   
   129   
   109     edge_property_vector<graph_type, T> getmaxflow(){
   130     typename graph_type::EdgeMap<T>  getmaxflow(){
   110       return preflow;
   131       return preflow;
   111     }
   132     }
   112 
   133 
   113 
   134 
   114   private:
   135   private:
   115     //For testing purposes only
   136     //For testing purposes only
   116     //Lists the node_properties
   137     //Lists the node_properties
   117     void write_property_vector(node_property_vector<graph_type, T> a, 
   138     void write_property_vector(typename graph_type::NodeMap<T> a,
       
   139 			       //node_property_vector<graph_type, T> a, 
   118 			       char* prop_name="property"){
   140 			       char* prop_name="property"){
   119       for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
   141       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   120 	cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
   142 	cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
   121       }
   143       }
   122       cout<<endl;
   144       cout<<endl;
   123     }
   145     }
   124 
   146 
   125     //Modifies the excess of the node and makes sufficient changes
   147     //Modifies the excess of the node and makes sufficient changes
   126     void modify_excess(const node_iterator& a ,T v){
   148     void modify_excess(const NodeIt& a ,T v){
   127 	T old_value=excess.get(a);
   149 	T old_value=excess.get(a);
   128 	excess.put(a,old_value+v);
   150 	excess.set(a,old_value+v);
   129     }
   151     }
   130   
   152   
   131     //This private procedure is supposed to modify the preflow on edge j
   153     //This private procedure is supposed to modify the preflow on edge j
   132     //by value v (which can be positive or negative as well) 
   154     //by value v (which can be positive or negative as well) 
   133     //and maintain the excess on the head and tail
   155     //and maintain the excess on the head and tail
   134     //Here we do not check whether this is possible or not
   156     //Here we do not check whether this is possible or not
   135     void modify_preflow(edge_iterator j, const T& v){
   157     void modify_preflow(EdgeIt j, const T& v){
   136 
   158 
   137       //Auxiliary variable
   159       //Auxiliary variable
   138       T old_value;
   160       T old_value;
   139 	
   161 	
   140       //Modifiyng the edge
   162       //Modifiyng the edge
   141       old_value=preflow.get(j);
   163       old_value=preflow.get(j);
   142       preflow.put(j,old_value+v);
   164       preflow.set(j,old_value+v);
   143 
   165 
   144 
   166 
   145       //Modifiyng the head
   167       //Modifiyng the head
   146       modify_excess(G.head(j),v);
   168       modify_excess(G.head(j),v);
   147 	
   169 	
   150 
   172 
   151     }
   173     }
   152 
   174 
   153     //Gives the active node to work with 
   175     //Gives the active node to work with 
   154     //(depending on the implementation to be used)
   176     //(depending on the implementation to be used)
   155     node_iterator get_active_node(){
   177     NodeIt get_active_node(){
   156       //cout<<highest_active<<endl;
   178       //cout<<highest_active<<endl;
   157 
   179 
   158       switch(implementation) {
   180       switch(implementation) {
   159       case impl_highest_label : {
   181       case impl_highest_label : {
   160 
   182 
   162 	while( highest_active>=0 && active_nodes[highest_active].empty() ){ 
   184 	while( highest_active>=0 && active_nodes[highest_active].empty() ){ 
   163 	  --highest_active;
   185 	  --highest_active;
   164 	}
   186 	}
   165 
   187 
   166 	if( highest_active>=0) {
   188 	if( highest_active>=0) {
   167 	  node_iterator a=active_nodes[highest_active].front();
   189 	  NodeIt a=active_nodes[highest_active].front();
   168 	  active_nodes[highest_active].pop_front();
   190 	  active_nodes[highest_active].pop_front();
   169 	  return a;
   191 	  return a;
   170 	}
   192 	}
   171 	else {
   193 	else {
   172 	  return node_iterator();
   194 	  return NodeIt();
   173 	}
   195 	}
   174 	
   196 	
   175 	break;
   197 	break;
   176 	
   198 	
   177       }
   199       }
   178       case impl_fifo : {
   200       case impl_fifo : {
   179 
   201 
   180 	if( ! fifo_nodes.empty() ) {
   202 	if( ! fifo_nodes.empty() ) {
   181 	  node_iterator a=fifo_nodes.front();
   203 	  NodeIt a=fifo_nodes.front();
   182 	  fifo_nodes.pop_front();
   204 	  fifo_nodes.pop_front();
   183 	  return a;
   205 	  return a;
   184 	}
   206 	}
   185 	else {
   207 	else {
   186 	  return node_iterator();
   208 	  return NodeIt();
   187 	}
   209 	}
   188 	break;
   210 	break;
   189       }
   211       }
   190       }
   212       }
   191       //
   213       //
   192       return node_iterator();
   214       return NodeIt();
   193     }
   215     }
   194 
   216 
   195     //Puts node 'a' among the active nodes
   217     //Puts node 'a' among the active nodes
   196     void make_active(const node_iterator& a){
   218     void make_active(const NodeIt& a){
   197       //s and t never become active
   219       //s and t never become active
   198       if (a!=s && a!= t){
   220       if (a!=s && a!= t){
   199 	switch(implementation){
   221 	switch(implementation){
   200 	case impl_highest_label :
   222 	case impl_highest_label :
   201 	  active_nodes[level.get(a)].push_back(a);
   223 	  active_nodes[level.get(a)].push_back(a);
   213       }
   235       }
   214 
   236 
   215     }
   237     }
   216 
   238 
   217     //Changes the level of node a and make sufficent changes
   239     //Changes the level of node a and make sufficent changes
   218     void change_level_to(node_iterator a, int new_value){
   240     void change_level_to(NodeIt a, int new_value){
   219       int seged = level.get(a);
   241       int seged = level.get(a);
   220       level.put(a,new_value);
   242       level.set(a,new_value);
   221       --num_of_nodes_on_level[seged];
   243       --num_of_nodes_on_level[seged];
   222       ++num_of_nodes_on_level[new_value];
   244       ++num_of_nodes_on_level[new_value];
   223     }
   245     }
   224 
   246 
   225     //Collection of things useful (or necessary) to do before running
   247     //Collection of things useful (or necessary) to do before running
       
   248 
   226     void preprocess(){
   249     void preprocess(){
   227 
   250 
   228       //---------------------------------------
   251       //---------------------------------------
   229       //Initialize parameters
   252       //Initialize parameters
   230       //---------------------------------------
   253       //---------------------------------------
   231 
   254 
   232       //Setting starting preflow, level and excess values to zero
   255       //Setting starting preflow, level and excess values to zero
   233       //This can be important, if the algorithm is run more then once
   256       //This can be important, if the algorithm is run more then once
   234       for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
   257       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   235         level.put(i,0);
   258         level.set(i,0);
   236         excess.put(i,0);
   259         excess.set(i,0);
   237 	for(out_edge_iterator j=G.first_out_edge(i); j.valid(); ++j) 
   260 	for(OutEdgeIt j=G.template first<OutEdgeIt>(i); j.valid(); ++j) 
   238 	  preflow.put(j, 0);
   261 	  preflow.set(j, 0);
   239       }
   262       }
   240       num_of_nodes_on_level[0]=number_of_nodes;
   263       num_of_nodes_on_level[0]=number_of_nodes;
   241       highest_active=0;
   264       highest_active=0;
   242       //---------------------------------------
   265       //---------------------------------------
   243       //Initialize parameters
   266       //Initialize parameters
   249       //------------------------------------
   272       //------------------------------------
   250       //Setting starting level values using reverse bfs
   273       //Setting starting level values using reverse bfs
   251       reverse_bfs<graph_type> rev_bfs(G,t);
   274       reverse_bfs<graph_type> rev_bfs(G,t);
   252       rev_bfs.run();
   275       rev_bfs.run();
   253       //write_property_vector(rev_bfs.dist,"rev_bfs");
   276       //write_property_vector(rev_bfs.dist,"rev_bfs");
   254       for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
   277       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   255         change_level_to(i,rev_bfs.dist(i));
   278         change_level_to(i,rev_bfs.dist(i));
   256 	//level.put(i,rev_bfs.dist.get(i));
   279 	//level.put(i,rev_bfs.dist.get(i));
   257       }
   280       }
   258       //------------------------------------
   281       //------------------------------------
   259       //This is the only part that uses BFS
   282       //This is the only part that uses BFS
   264       change_level_to(s,number_of_nodes);
   287       change_level_to(s,number_of_nodes);
   265       //level.put(s,number_of_nodes);
   288       //level.put(s,number_of_nodes);
   266       
   289       
   267       
   290       
   268       //we push as much preflow from s as possible to start with
   291       //we push as much preflow from s as possible to start with
   269       for(out_edge_iterator j=G.first_out_edge(s); j.valid(); ++j){ 
   292       for(OutEdgeIt j=G.template first<OutEdgeIt>(s); j.valid(); ++j){ 
   270 	modify_preflow(j,capacity.get(j) );
   293 	modify_preflow(j,capacity.get(j) );
   271 	make_active(G.head(j));
   294 	make_active(G.head(j));
   272 	int lev=level.get(G.head(j));
   295 	int lev=level.get(G.head(j));
   273 	if(highest_active<lev){
   296 	if(highest_active<lev){
   274 	  highest_active=lev;
   297 	  highest_active=lev;
   278     } 
   301     } 
   279 
   302 
   280     
   303     
   281     //If the preflow is less than the capacity on the given edge
   304     //If the preflow is less than the capacity on the given edge
   282     //then it is an edge in the residual graph
   305     //then it is an edge in the residual graph
   283     bool is_admissible_forward_edge(out_edge_iterator j, int& new_level){
   306     bool is_admissible_forward_edge(OutEdgeIt j, int& new_level){
   284       if (capacity.get(j)>preflow.get(j)){
   307       if (capacity.get(j)>preflow.get(j)){
   285 	if(level.get(G.tail(j))==level.get(G.head(j))+1){
   308 	if(level.get(G.tail(j))==level.get(G.head(j))+1){
   286 	  return true;
   309 	  return true;
   287 	}
   310 	}
   288 	else{
   311 	else{
   293       return false;
   316       return false;
   294     }
   317     }
   295 
   318 
   296     //If the preflow is greater than 0 on the given edge
   319     //If the preflow is greater than 0 on the given edge
   297     //then the edge reversd is an edge in the residual graph
   320     //then the edge reversd is an edge in the residual graph
   298     bool is_admissible_backward_edge(in_edge_iterator j, int& new_level){
   321     bool is_admissible_backward_edge(InEdgeIt j, int& new_level){
   299       if (0<preflow.get(j)){
   322       if (0<preflow.get(j)){
   300 	if(level.get(G.tail(j))==level.get(G.head(j))-1){
   323 	if(level.get(G.tail(j))==level.get(G.head(j))-1){
   301 	  return true;
   324 	  return true;
   302 	}
   325 	}
   303 	else{
   326 	else{
   316     T preflow_push<graph_type, T>::run() {
   339     T preflow_push<graph_type, T>::run() {
   317     
   340     
   318     preprocess();
   341     preprocess();
   319     
   342     
   320     T e,v;
   343     T e,v;
   321     node_iterator a;
   344     NodeIt a;
   322     while (a=get_active_node(), a.valid()){
   345     while (a=get_active_node(), a.valid()){
   323       //cout<<G.id(a)<<endl;
   346       //cout<<G.id(a)<<endl;
   324       //write_property_vector(excess,"excess");
   347       //write_property_vector(excess,"excess");
   325       //write_property_vector(level,"level");
   348       //write_property_vector(level,"level");
   326 
   349 
   327       //Initial value for the new level for the active node we are dealing with
       
   328       int new_level=2*number_of_nodes;
       
   329 
   350 
   330       bool go_to_next_node=false;
   351       bool go_to_next_node=false;
   331       e = excess.get(a);
   352       e = excess.get(a);
   332       while (!go_to_next_node){
   353       while (!go_to_next_node){
   333 	
   354 
       
   355 	//Initial value for the new level for the active node we are dealing with
       
   356 	int new_level=2*number_of_nodes;
       
   357 	//write_property_vector(excess,"excess");
       
   358 	//write_property_vector(level,"level");
       
   359 	//cout<<G.id(a)<<endl;
   334 	//Out edges from node a
   360 	//Out edges from node a
   335 	{
   361 	{
   336 	  out_edge_iterator j=G.first_out_edge(a);
   362 	  OutEdgeIt j=G.template first<OutEdgeIt>(a);
   337 	  while (j.valid() && e){
   363 	  while (j.valid() && e){
   338 
   364 
   339 	    if (is_admissible_forward_edge(j,new_level)){
   365 	    if (is_admissible_forward_edge(j,new_level)){
   340 	      v=min(e,capacity.get(j) - preflow.get(j));
   366 	      v=min(e,capacity.get(j) - preflow.get(j));
   341 	      e -= v;
   367 	      e -= v;
   348 	    ++j;
   374 	    ++j;
   349 	  }
   375 	  }
   350 	}
   376 	}
   351 	//In edges to node a
   377 	//In edges to node a
   352 	{
   378 	{
   353 	  in_edge_iterator j=G.first_in_edge(a);
   379 	  InEdgeIt j=G.template first<InEdgeIt>(a);
   354 	  while (j.valid() && e){
   380 	  while (j.valid() && e){
   355 	    if (is_admissible_backward_edge(j,new_level)){
   381 	    if (is_admissible_backward_edge(j,new_level)){
   356 	      v=min(e,preflow.get(j));
   382 	      v=min(e,preflow.get(j));
   357 	      e -= v;
   383 	      e -= v;
   358 	      //New node might become active
   384 	      //New node might become active
   370 	if (0==e){
   396 	if (0==e){
   371 	  //Saturating push
   397 	  //Saturating push
   372 	  go_to_next_node=true;
   398 	  go_to_next_node=true;
   373 	}
   399 	}
   374 	else{//If there is still excess in node a
   400 	else{//If there is still excess in node a
   375 
   401 	  
       
   402 	  //change_level_to(a,new_level+1);
       
   403 	  
   376 	  //Level remains empty
   404 	  //Level remains empty
   377 	  if (num_of_nodes_on_level[level.get(a)]==1){
   405 	  if (num_of_nodes_on_level[level.get(a)]==1){
   378 	    change_level_to(a,number_of_nodes);
   406 	    change_level_to(a,number_of_nodes);
   379 	    //go_to_next_node=True;
   407 	    //go_to_next_node=True;
   380 	  }
   408 	  }
   381 	  else{
   409 	  else{
   382 	    change_level_to(a,new_level+1);
   410 	    change_level_to(a,new_level+1);
   383 	    //increase_level(a);
   411 	    //increase_level(a);
   384 	  }
   412 	  }
   385 
   413 	  
   386     
   414     
   387 	  
   415 	  
   388 
   416 
   389 	  switch(node_examination){
   417 	  switch(node_examination){
   390 	  case examine_to_relabel:
   418 	  case examine_to_relabel: