1 // -*- c++ -*- |
|
2 #ifndef HUGO_MINLENGTHPATHS_H |
|
3 #define HUGO_MINLENGTHPATHS_H |
|
4 |
|
5 ///\file |
|
6 ///\brief An algorithm for finding k paths of minimal total length. |
|
7 |
|
8 #include <iostream> |
|
9 #include <dijkstra.h> |
|
10 #include <graph_wrapper.h> |
|
11 #include <maps.h> |
|
12 |
|
13 namespace hugo { |
|
14 |
|
15 |
|
16 ///\brief Implementation of an algorithm for finding k paths between 2 nodes |
|
17 /// of minimal total length |
|
18 /// |
|
19 /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements |
|
20 /// an algorithm which finds k edge-disjoint paths |
|
21 /// from a given source node to a given target node in an |
|
22 /// edge-weighted directed graph having minimal total weigth (length). |
|
23 |
|
24 template <typename Graph, typename LengthMap> |
|
25 class MinLengthPaths { |
|
26 |
|
27 typedef typename LengthMap::ValueType Length; |
|
28 |
|
29 typedef typename Graph::Node Node; |
|
30 typedef typename Graph::NodeIt NodeIt; |
|
31 typedef typename Graph::Edge Edge; |
|
32 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
33 typedef typename Graph::EdgeMap<int> EdgeIntMap; |
|
34 |
|
35 typedef ConstMap<Edge,int> ConstMap; |
|
36 |
|
37 typedef ResGraphWrapper<const Graph,int,EdgeIntMap,ConstMap> ResGraphType; |
|
38 |
|
39 |
|
40 class ModLengthMap { |
|
41 typedef typename ResGraphType::NodeMap<Length> NodeMap; |
|
42 const ResGraphType& G; |
|
43 const EdgeIntMap& rev; |
|
44 const LengthMap &ol; |
|
45 const NodeMap &pot; |
|
46 public : |
|
47 typedef typename LengthMap::KeyType KeyType; |
|
48 typedef typename LengthMap::ValueType ValueType; |
|
49 |
|
50 ValueType operator[](typename ResGraphType::Edge e) const { |
|
51 if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){ |
|
52 ///\TODO This has to be removed |
|
53 std::cout<<"Negative length!!"<<std::endl; |
|
54 } |
|
55 return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
|
56 } |
|
57 |
|
58 ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, |
|
59 const LengthMap &o, const NodeMap &p) : |
|
60 G(_G), rev(_rev), ol(o), pot(p){}; |
|
61 }; |
|
62 |
|
63 |
|
64 const Graph& G; |
|
65 const LengthMap& length; |
|
66 |
|
67 //auxiliary variable |
|
68 //The value is 1 iff the edge is reversed |
|
69 EdgeIntMap reversed; |
|
70 |
|
71 |
|
72 public : |
|
73 |
|
74 |
|
75 MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), |
|
76 length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } |
|
77 |
|
78 ///Runs the algorithm |
|
79 |
|
80 ///Runs the algorithm |
|
81 ///Returns k if there are at least k edge-disjoint paths from s to t. |
|
82 ///Otherwise it returns the number of edge-disjoint paths from s to t. |
|
83 int run(Node s, Node t, int k) { |
|
84 ConstMap const1map(1); |
|
85 |
|
86 ResGraphType res_graph(G, reversed, const1map); |
|
87 |
|
88 //Initialize the copy of the Dijkstra potential to zero |
|
89 typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph); |
|
90 ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist); |
|
91 |
|
92 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
|
93 |
|
94 for (int i=0; i<k; ++i){ |
|
95 dijkstra.run(s); |
|
96 if (!dijkstra.reached(t)){ |
|
97 //There is no k path from s to t |
|
98 /// \TODO mit keresett itt ez a ++? |
|
99 return i; |
|
100 }; |
|
101 |
|
102 { |
|
103 //We have to copy the potential |
|
104 typename ResGraphType::NodeIt n; |
|
105 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
|
106 dijkstra_dist[n] += dijkstra.distMap()[n]; |
|
107 } |
|
108 } |
|
109 |
|
110 |
|
111 //Reversing the sortest path |
|
112 Node n=t; |
|
113 Edge e; |
|
114 while (n!=s){ |
|
115 e = dijkstra.pred(n); |
|
116 n = dijkstra.predNode(n); |
|
117 reversed[e] = 1-reversed[e]; |
|
118 } |
|
119 |
|
120 |
|
121 } |
|
122 return k; |
|
123 } |
|
124 |
|
125 |
|
126 |
|
127 |
|
128 |
|
129 }; //class MinLengthPaths |
|
130 |
|
131 |
|
132 } //namespace hugo |
|
133 |
|
134 #endif //HUGO_MINLENGTHPATHS_H |
|