|
1 /* -*- C++ -*- |
|
2 * src/lemon/bezier.h - Part of LEMON, a generic C++ optimization library |
|
3 * |
|
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
5 * (Egervary Combinatorial Optimization Research Group, EGRES). |
|
6 * |
|
7 * Permission to use, modify and distribute this software is granted |
|
8 * provided that this copyright notice appears in all copies. For |
|
9 * precise terms see the accompanying LICENSE file. |
|
10 * |
|
11 * This software is provided "AS IS" with no warranty of any kind, |
|
12 * express or implied, and with no claim as to its suitability for any |
|
13 * purpose. |
|
14 * |
|
15 */ |
|
16 |
|
17 #ifndef LEMON_BEZIER_H |
|
18 #define LEMON_BEZIER_H |
|
19 |
|
20 ///\ingroup misc |
|
21 ///\file |
|
22 ///\brief Classes to compute with Bezier curves. |
|
23 /// |
|
24 ///Up to now this file is internally used by \ref graph_to_eps.h |
|
25 /// |
|
26 ///\author Alpar Juttner |
|
27 |
|
28 #include<lemon/xy.h> |
|
29 |
|
30 namespace lemon { |
|
31 |
|
32 class BezierBase { |
|
33 public: |
|
34 typedef xy<double> xy; |
|
35 protected: |
|
36 static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;} |
|
37 }; |
|
38 |
|
39 class Bezier1 : public BezierBase |
|
40 { |
|
41 public: |
|
42 xy p1,p2; |
|
43 |
|
44 Bezier1() {} |
|
45 Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {} |
|
46 |
|
47 xy operator()(double t) const |
|
48 { |
|
49 // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
|
50 return conv(p1,p2,t); |
|
51 } |
|
52 Bezier1 before(double t) const |
|
53 { |
|
54 return Bezier1(p1,conv(p1,p2,t)); |
|
55 } |
|
56 |
|
57 Bezier1 after(double t) const |
|
58 { |
|
59 return Bezier1(conv(p1,p2,t),p2); |
|
60 } |
|
61 Bezier1 operator()(double a,double b) { return before(b).after(a/b); } |
|
62 }; |
|
63 |
|
64 class Bezier2 : public BezierBase |
|
65 { |
|
66 public: |
|
67 xy p1,p2,p3; |
|
68 |
|
69 Bezier2() {} |
|
70 Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
|
71 Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
|
72 xy operator()(double t) const |
|
73 { |
|
74 // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
|
75 return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
|
76 } |
|
77 Bezier2 before(double t) const |
|
78 { |
|
79 xy q(conv(p1,p2,t)); |
|
80 xy r(conv(p2,p3,t)); |
|
81 return Bezier2(p1,q,conv(q,r,t)); |
|
82 } |
|
83 |
|
84 Bezier2 after(double t) const |
|
85 { |
|
86 xy q(conv(p1,p2,t)); |
|
87 xy r(conv(p2,p3,t)); |
|
88 return Bezier2(conv(q,r,t),r,p3); |
|
89 } |
|
90 Bezier2 operator()(double a,double b) { return before(b).after(a/b); } |
|
91 |
|
92 }; |
|
93 |
|
94 class Bezier3 : public BezierBase |
|
95 { |
|
96 public: |
|
97 xy p1,p2,p3,p4; |
|
98 |
|
99 Bezier3() {} |
|
100 Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {} |
|
101 Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
|
102 p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {} |
|
103 Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
|
104 p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {} |
|
105 |
|
106 xy operator()(double t) const |
|
107 { |
|
108 // return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
|
109 return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
|
110 (3*t*t*(1-t))*p3+(t*t*t)*p4; |
|
111 } |
|
112 Bezier3 before(double t) const |
|
113 { |
|
114 xy p(conv(p1,p2,t)); |
|
115 xy q(conv(p2,p3,t)); |
|
116 xy r(conv(p3,p4,t)); |
|
117 xy a(conv(p,q,t)); |
|
118 xy b(conv(q,r,t)); |
|
119 xy c(conv(a,b,t)); |
|
120 return Bezier3(p1,p,a,c); |
|
121 } |
|
122 |
|
123 Bezier3 after(double t) const |
|
124 { |
|
125 xy p(conv(p1,p2,t)); |
|
126 xy q(conv(p2,p3,t)); |
|
127 xy r(conv(p3,p4,t)); |
|
128 xy a(conv(p,q,t)); |
|
129 xy b(conv(q,r,t)); |
|
130 xy c(conv(a,b,t)); |
|
131 return Bezier3(c,b,r,p4); |
|
132 } |
|
133 Bezier3 operator()(double a,double b) { return before(b).after(a/b); } |
|
134 |
|
135 }; |
|
136 |
|
137 } //END OF NAMESPACE LEMON |
|
138 |
|
139 #endif // LEMON_BEZIER_H |