src/hugo/kruskal.h
changeset 810 e9fbc747ca47
child 812 182d3a4d7ddb
equal deleted inserted replaced
-1:000000000000 0:511118ae2946
       
     1 // -*- c++ -*- //
       
     2 #ifndef HUGO_KRUSKAL_H
       
     3 #define HUGO_KRUSKAL_H
       
     4 
       
     5 #include <algorithm>
       
     6 #include <hugo/unionfind.h>
       
     7 
       
     8 /**
       
     9 @defgroup spantree Minimum Cost Spanning Tree Algorithms
       
    10 @ingroup galgs
       
    11 \brief This group containes the algorithms for finding a minimum cost spanning
       
    12 tree in a graph
       
    13 
       
    14 This group containes the algorithms for finding a minimum cost spanning
       
    15 tree in a graph
       
    16 */
       
    17 
       
    18 ///\ingroup spantree
       
    19 ///\file
       
    20 ///\brief Kruskal's algorithm to compute a minimum cost tree
       
    21 ///
       
    22 ///Kruskal's algorithm to compute a minimum cost tree.
       
    23 
       
    24 namespace hugo {
       
    25 
       
    26   /// \addtogroup spantree
       
    27   /// @{
       
    28 
       
    29   /// Kruskal's algorithm to find a minimum cost tree of a graph.
       
    30 
       
    31   /// This function runs Kruskal's algorithm to find a minimum cost tree.
       
    32   /// \param G The graph the algorithm runs on. The algorithm considers the
       
    33   /// graph to be undirected, the direction of the edges are not used.
       
    34   ///
       
    35   /// \param in This object is used to describe the edge costs. It must
       
    36   /// be an STL compatible 'Forward Container'
       
    37   /// with <tt>std::pair<Graph::Edge,X></tt> as its <tt>value_type</tt>,
       
    38   /// where X is the type of the costs. It must contain every edge in
       
    39   /// cost-ascending order.
       
    40   ///\par
       
    41   /// For the sake of simplicity, there is a helper class KruskalMapInput,
       
    42   /// which converts a
       
    43   /// simple edge map to an input of this form. Alternatively, you can use
       
    44   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
       
    45   /// the edge costs are given by an edge map.
       
    46   ///
       
    47   /// \retval out This must be a writable \c bool edge map.
       
    48   /// After running the algorithm
       
    49   /// this will contain the found minimum cost spanning tree: the value of an
       
    50   /// edge will be set to \c true if it belongs to the tree, otherwise it will
       
    51   /// be set to \c false. The value of each edge will be set exactly once.
       
    52   ///
       
    53   /// \return The cost of the found tree.
       
    54 
       
    55   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
       
    56   typename InputEdgeOrder::value_type::second_type
       
    57   kruskal(Graph const& G, InputEdgeOrder const& in, 
       
    58 		 OutBoolMap& out)
       
    59   {
       
    60     typedef typename InputEdgeOrder::value_type::second_type EdgeCost;
       
    61     typedef typename Graph::template NodeMap<int> NodeIntMap;
       
    62     typedef typename Graph::Node Node;
       
    63 
       
    64     NodeIntMap comp(G, -1);
       
    65     UnionFind<Node,NodeIntMap> uf(comp); 
       
    66       
       
    67     EdgeCost tot_cost = 0;
       
    68     for (typename InputEdgeOrder::const_iterator p = in.begin(); 
       
    69 	 p!=in.end(); ++p ) {
       
    70       if ( uf.join(G.head((*p).first),
       
    71 		   G.tail((*p).first)) ) {
       
    72 	out.set((*p).first, true);
       
    73 	tot_cost += (*p).second;
       
    74       }
       
    75       else {
       
    76 	out.set((*p).first, false);
       
    77       }
       
    78     }
       
    79     return tot_cost;
       
    80   }
       
    81 
       
    82   /* A work-around for running Kruskal with const-reference bool maps... */
       
    83 
       
    84   ///\bug What is this? Or why doesn't it works?
       
    85   ///
       
    86   template<typename Map>
       
    87   class NonConstMapWr {
       
    88     const Map &m;
       
    89   public:
       
    90     typedef typename Map::ValueType ValueType;
       
    91 
       
    92     NonConstMapWr(const Map &_m) : m(_m) {}
       
    93 
       
    94     template<typename KeyType>
       
    95     void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
       
    96   };
       
    97 
       
    98   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
       
    99   inline
       
   100   typename InputEdgeOrder::ValueType
       
   101   kruskal(Graph const& G, InputEdgeOrder const& edges, 
       
   102 	  OutBoolMap const& out_map)
       
   103   {
       
   104     NonConstMapWr<OutBoolMap> map_wr(out_map);
       
   105     return kruskal(G, edges, map_wr);
       
   106   }  
       
   107 
       
   108   /* ** ** Input-objects ** ** */
       
   109 
       
   110   /// Kruskal input source.
       
   111 
       
   112   /// Kruskal input source.
       
   113   ///
       
   114   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
       
   115   ///
       
   116   /// \sa makeKruskalMapInput()
       
   117   ///
       
   118   ///\param Graph The type of the graph the algorithm runs on.
       
   119   ///\param Map An edge map containing the cost of the edges.
       
   120   ///\par
       
   121   ///The cost type can be any type satisfying
       
   122   ///the STL 'LessThan comparable'
       
   123   ///concept if it also has an operator+() implemented. (It is necessary for
       
   124   ///computing the total cost of the tree).
       
   125   ///
       
   126   template<typename Graph, typename Map>
       
   127   class KruskalMapInput
       
   128     : public std::vector< std::pair<typename Graph::Edge,
       
   129 				    typename Map::ValueType> > {
       
   130     
       
   131   public:
       
   132     typedef std::vector< std::pair<typename Graph::Edge,
       
   133 				   typename Map::ValueType> > Parent;
       
   134     typedef typename Parent::value_type value_type;
       
   135 
       
   136   private:
       
   137     class comparePair {
       
   138     public:
       
   139       bool operator()(const value_type& a,
       
   140 		      const value_type& b) {
       
   141 	return a.second < b.second;
       
   142       }
       
   143     };
       
   144 
       
   145   public:
       
   146 
       
   147     void sort() {
       
   148       std::sort(this->begin(), this->end(), comparePair());
       
   149     }
       
   150 
       
   151     KruskalMapInput(Graph const& G, Map const& m) {
       
   152       typedef typename Graph::EdgeIt EdgeIt;
       
   153       
       
   154       this->clear();
       
   155       for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e]));
       
   156       sort();
       
   157     }
       
   158   };
       
   159 
       
   160   /// Creates a KruskalMapInput object for \ref kruskal()
       
   161 
       
   162   /// It makes is easier to use 
       
   163   /// \ref KruskalMapInput by making it unnecessary 
       
   164   /// to explicitly give the type of the parameters.
       
   165   ///
       
   166   /// In most cases you possibly
       
   167   /// want to use the function kruskalEdgeMap() instead.
       
   168   ///
       
   169   ///\param G The type of the graph the algorithm runs on.
       
   170   ///\param m An edge map containing the cost of the edges.
       
   171   ///\par
       
   172   ///The cost type can be any type satisfying the
       
   173   ///STL 'LessThan Comparable'
       
   174   ///concept if it also has an operator+() implemented. (It is necessary for
       
   175   ///computing the total cost of the tree).
       
   176   ///
       
   177   ///\return An appropriate input source for \ref kruskal().
       
   178   ///
       
   179   template<typename Graph, typename Map>
       
   180   inline
       
   181   KruskalMapInput<Graph,Map> makeKruskalMapInput(const Graph &G,const Map &m)
       
   182   {
       
   183     return KruskalMapInput<Graph,Map>(G,m);
       
   184   }
       
   185   
       
   186   
       
   187   /* ** ** Output-objects: simple writable bool maps** ** */
       
   188   
       
   189   /// A writable bool-map that makes a sequence of "true" keys
       
   190 
       
   191   /// A writable bool-map that creates a sequence out of keys that receives
       
   192   /// the value "true".
       
   193   /// \warning Not a regular property map, as it doesn't know its KeyType
       
   194   /// \bug Missing documentation.
       
   195   /// \todo This class may be of wider usage, therefore it could move to
       
   196   /// <tt>maps.h</tt>
       
   197   template<typename Iterator>
       
   198   class SequenceOutput {
       
   199     mutable Iterator it;
       
   200 
       
   201   public:
       
   202     typedef bool ValueType;
       
   203 
       
   204     SequenceOutput(Iterator const &_it) : it(_it) {}
       
   205 
       
   206     template<typename KeyType>
       
   207     void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
       
   208   };
       
   209 
       
   210   template<typename Iterator>
       
   211   inline
       
   212   SequenceOutput<Iterator>
       
   213   makeSequenceOutput(Iterator it) {
       
   214     return SequenceOutput<Iterator>(it);
       
   215   }
       
   216 
       
   217   /* ** ** Wrapper funtions ** ** */
       
   218 
       
   219 
       
   220   /// \brief Wrapper function to kruskal().
       
   221   /// Input is from an edge map, output is a plain bool map.
       
   222   ///
       
   223   /// Wrapper function to kruskal().
       
   224   /// Input is from an edge map, output is a plain bool map.
       
   225   ///
       
   226   ///\param G The type of the graph the algorithm runs on.
       
   227   ///\param in An edge map containing the cost of the edges.
       
   228   ///\par
       
   229   ///The cost type can be any type satisfying the
       
   230   ///STL 'LessThan Comparable'
       
   231   ///concept if it also has an operator+() implemented. (It is necessary for
       
   232   ///computing the total cost of the tree).
       
   233   ///
       
   234   /// \retval out This must be a writable \c bool edge map.
       
   235   /// After running the algorithm
       
   236   /// this will contain the found minimum cost spanning tree: the value of an
       
   237   /// edge will be set to \c true if it belongs to the tree, otherwise it will
       
   238   /// be set to \c false. The value of each edge will be set exactly once.
       
   239   ///
       
   240   /// \return The cost of the found tree.
       
   241 
       
   242 
       
   243   template <typename Graph, typename EdgeCostMap, typename RetEdgeBoolMap>
       
   244   inline
       
   245   typename EdgeCostMap::ValueType
       
   246   kruskalEdgeMap(Graph const& G,
       
   247 		 EdgeCostMap const& in,
       
   248 		 RetEdgeBoolMap &out) {
       
   249     return kruskal(G,
       
   250 		   KruskalMapInput<Graph,EdgeCostMap>(G,in),
       
   251 		   out);
       
   252   }
       
   253 
       
   254   /// \brief Wrapper function to kruskal().
       
   255   /// Input is from an edge map, output is an STL Sequence.
       
   256   ///
       
   257   /// Wrapper function to kruskal().
       
   258   /// Input is from an edge map, output is an STL Sequence.
       
   259   ///
       
   260   ///\param G The type of the graph the algorithm runs on.
       
   261   ///\param in An edge map containing the cost of the edges.
       
   262   ///\par
       
   263   ///The cost type can be any type satisfying the
       
   264   ///STL 'LessThan Comparable'
       
   265   ///concept if it also has an operator+() implemented. (It is necessary for
       
   266   ///computing the total cost of the tree).
       
   267   ///
       
   268   /// \retval out This must be an iteraror of an STL Container with
       
   269   /// <tt>Graph::Edge</tt> as its <tt>value_type</tt>.
       
   270   /// The algorithm copies the elements of the found tree into this sequence.
       
   271   /// For example, if we know that the spanning tree of the graph \c G has
       
   272   /// say 53 edges then
       
   273   /// we can put its edges into a vector \c tree with a code like this.
       
   274   /// \code
       
   275   /// std::vector<Edge> tree(53);
       
   276   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
       
   277   /// \endcode
       
   278   /// Or if we don't know in advance the size of the tree, we can write this.
       
   279   /// \code
       
   280   /// std::vector<Edge> tree;
       
   281   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
       
   282   /// \endcode
       
   283   ///
       
   284   /// \return The cost of the found tree.
       
   285   ///
       
   286   /// \bug its name does not follow the coding style.
       
   287   template <typename Graph, typename EdgeCostMap, typename RetIterator>
       
   288   inline
       
   289   typename EdgeCostMap::ValueType
       
   290   kruskalEdgeMap_IteratorOut(const Graph& G,
       
   291 			     const EdgeCostMap& in,
       
   292 			     RetIterator out)
       
   293   {
       
   294     SequenceOutput<RetIterator> _out(out);
       
   295     return kruskal(G,
       
   296 		   KruskalMapInput<Graph, EdgeCostMap>(G, in),
       
   297 		   _out);
       
   298   }
       
   299 
       
   300   /// @}
       
   301 
       
   302 } //namespace hugo
       
   303 
       
   304 #endif //HUGO_KRUSKAL_H