|
1 // -*- c++ -*- // |
|
2 #ifndef HUGO_KRUSKAL_H |
|
3 #define HUGO_KRUSKAL_H |
|
4 |
|
5 #include <algorithm> |
|
6 #include <hugo/unionfind.h> |
|
7 |
|
8 /** |
|
9 @defgroup spantree Minimum Cost Spanning Tree Algorithms |
|
10 @ingroup galgs |
|
11 \brief This group containes the algorithms for finding a minimum cost spanning |
|
12 tree in a graph |
|
13 |
|
14 This group containes the algorithms for finding a minimum cost spanning |
|
15 tree in a graph |
|
16 */ |
|
17 |
|
18 ///\ingroup spantree |
|
19 ///\file |
|
20 ///\brief Kruskal's algorithm to compute a minimum cost tree |
|
21 /// |
|
22 ///Kruskal's algorithm to compute a minimum cost tree. |
|
23 |
|
24 namespace hugo { |
|
25 |
|
26 /// \addtogroup spantree |
|
27 /// @{ |
|
28 |
|
29 /// Kruskal's algorithm to find a minimum cost tree of a graph. |
|
30 |
|
31 /// This function runs Kruskal's algorithm to find a minimum cost tree. |
|
32 /// \param G The graph the algorithm runs on. The algorithm considers the |
|
33 /// graph to be undirected, the direction of the edges are not used. |
|
34 /// |
|
35 /// \param in This object is used to describe the edge costs. It must |
|
36 /// be an STL compatible 'Forward Container' |
|
37 /// with <tt>std::pair<Graph::Edge,X></tt> as its <tt>value_type</tt>, |
|
38 /// where X is the type of the costs. It must contain every edge in |
|
39 /// cost-ascending order. |
|
40 ///\par |
|
41 /// For the sake of simplicity, there is a helper class KruskalMapInput, |
|
42 /// which converts a |
|
43 /// simple edge map to an input of this form. Alternatively, you can use |
|
44 /// the function \ref kruskalEdgeMap to compute the minimum cost tree if |
|
45 /// the edge costs are given by an edge map. |
|
46 /// |
|
47 /// \retval out This must be a writable \c bool edge map. |
|
48 /// After running the algorithm |
|
49 /// this will contain the found minimum cost spanning tree: the value of an |
|
50 /// edge will be set to \c true if it belongs to the tree, otherwise it will |
|
51 /// be set to \c false. The value of each edge will be set exactly once. |
|
52 /// |
|
53 /// \return The cost of the found tree. |
|
54 |
|
55 template <typename Graph, typename InputEdgeOrder, typename OutBoolMap> |
|
56 typename InputEdgeOrder::value_type::second_type |
|
57 kruskal(Graph const& G, InputEdgeOrder const& in, |
|
58 OutBoolMap& out) |
|
59 { |
|
60 typedef typename InputEdgeOrder::value_type::second_type EdgeCost; |
|
61 typedef typename Graph::template NodeMap<int> NodeIntMap; |
|
62 typedef typename Graph::Node Node; |
|
63 |
|
64 NodeIntMap comp(G, -1); |
|
65 UnionFind<Node,NodeIntMap> uf(comp); |
|
66 |
|
67 EdgeCost tot_cost = 0; |
|
68 for (typename InputEdgeOrder::const_iterator p = in.begin(); |
|
69 p!=in.end(); ++p ) { |
|
70 if ( uf.join(G.head((*p).first), |
|
71 G.tail((*p).first)) ) { |
|
72 out.set((*p).first, true); |
|
73 tot_cost += (*p).second; |
|
74 } |
|
75 else { |
|
76 out.set((*p).first, false); |
|
77 } |
|
78 } |
|
79 return tot_cost; |
|
80 } |
|
81 |
|
82 /* A work-around for running Kruskal with const-reference bool maps... */ |
|
83 |
|
84 ///\bug What is this? Or why doesn't it works? |
|
85 /// |
|
86 template<typename Map> |
|
87 class NonConstMapWr { |
|
88 const Map &m; |
|
89 public: |
|
90 typedef typename Map::ValueType ValueType; |
|
91 |
|
92 NonConstMapWr(const Map &_m) : m(_m) {} |
|
93 |
|
94 template<typename KeyType> |
|
95 void set(KeyType const& k, ValueType const &v) const { m.set(k,v); } |
|
96 }; |
|
97 |
|
98 template <typename Graph, typename InputEdgeOrder, typename OutBoolMap> |
|
99 inline |
|
100 typename InputEdgeOrder::ValueType |
|
101 kruskal(Graph const& G, InputEdgeOrder const& edges, |
|
102 OutBoolMap const& out_map) |
|
103 { |
|
104 NonConstMapWr<OutBoolMap> map_wr(out_map); |
|
105 return kruskal(G, edges, map_wr); |
|
106 } |
|
107 |
|
108 /* ** ** Input-objects ** ** */ |
|
109 |
|
110 /// Kruskal input source. |
|
111 |
|
112 /// Kruskal input source. |
|
113 /// |
|
114 /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead. |
|
115 /// |
|
116 /// \sa makeKruskalMapInput() |
|
117 /// |
|
118 ///\param Graph The type of the graph the algorithm runs on. |
|
119 ///\param Map An edge map containing the cost of the edges. |
|
120 ///\par |
|
121 ///The cost type can be any type satisfying |
|
122 ///the STL 'LessThan comparable' |
|
123 ///concept if it also has an operator+() implemented. (It is necessary for |
|
124 ///computing the total cost of the tree). |
|
125 /// |
|
126 template<typename Graph, typename Map> |
|
127 class KruskalMapInput |
|
128 : public std::vector< std::pair<typename Graph::Edge, |
|
129 typename Map::ValueType> > { |
|
130 |
|
131 public: |
|
132 typedef std::vector< std::pair<typename Graph::Edge, |
|
133 typename Map::ValueType> > Parent; |
|
134 typedef typename Parent::value_type value_type; |
|
135 |
|
136 private: |
|
137 class comparePair { |
|
138 public: |
|
139 bool operator()(const value_type& a, |
|
140 const value_type& b) { |
|
141 return a.second < b.second; |
|
142 } |
|
143 }; |
|
144 |
|
145 public: |
|
146 |
|
147 void sort() { |
|
148 std::sort(this->begin(), this->end(), comparePair()); |
|
149 } |
|
150 |
|
151 KruskalMapInput(Graph const& G, Map const& m) { |
|
152 typedef typename Graph::EdgeIt EdgeIt; |
|
153 |
|
154 this->clear(); |
|
155 for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e])); |
|
156 sort(); |
|
157 } |
|
158 }; |
|
159 |
|
160 /// Creates a KruskalMapInput object for \ref kruskal() |
|
161 |
|
162 /// It makes is easier to use |
|
163 /// \ref KruskalMapInput by making it unnecessary |
|
164 /// to explicitly give the type of the parameters. |
|
165 /// |
|
166 /// In most cases you possibly |
|
167 /// want to use the function kruskalEdgeMap() instead. |
|
168 /// |
|
169 ///\param G The type of the graph the algorithm runs on. |
|
170 ///\param m An edge map containing the cost of the edges. |
|
171 ///\par |
|
172 ///The cost type can be any type satisfying the |
|
173 ///STL 'LessThan Comparable' |
|
174 ///concept if it also has an operator+() implemented. (It is necessary for |
|
175 ///computing the total cost of the tree). |
|
176 /// |
|
177 ///\return An appropriate input source for \ref kruskal(). |
|
178 /// |
|
179 template<typename Graph, typename Map> |
|
180 inline |
|
181 KruskalMapInput<Graph,Map> makeKruskalMapInput(const Graph &G,const Map &m) |
|
182 { |
|
183 return KruskalMapInput<Graph,Map>(G,m); |
|
184 } |
|
185 |
|
186 |
|
187 /* ** ** Output-objects: simple writable bool maps** ** */ |
|
188 |
|
189 /// A writable bool-map that makes a sequence of "true" keys |
|
190 |
|
191 /// A writable bool-map that creates a sequence out of keys that receives |
|
192 /// the value "true". |
|
193 /// \warning Not a regular property map, as it doesn't know its KeyType |
|
194 /// \bug Missing documentation. |
|
195 /// \todo This class may be of wider usage, therefore it could move to |
|
196 /// <tt>maps.h</tt> |
|
197 template<typename Iterator> |
|
198 class SequenceOutput { |
|
199 mutable Iterator it; |
|
200 |
|
201 public: |
|
202 typedef bool ValueType; |
|
203 |
|
204 SequenceOutput(Iterator const &_it) : it(_it) {} |
|
205 |
|
206 template<typename KeyType> |
|
207 void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} } |
|
208 }; |
|
209 |
|
210 template<typename Iterator> |
|
211 inline |
|
212 SequenceOutput<Iterator> |
|
213 makeSequenceOutput(Iterator it) { |
|
214 return SequenceOutput<Iterator>(it); |
|
215 } |
|
216 |
|
217 /* ** ** Wrapper funtions ** ** */ |
|
218 |
|
219 |
|
220 /// \brief Wrapper function to kruskal(). |
|
221 /// Input is from an edge map, output is a plain bool map. |
|
222 /// |
|
223 /// Wrapper function to kruskal(). |
|
224 /// Input is from an edge map, output is a plain bool map. |
|
225 /// |
|
226 ///\param G The type of the graph the algorithm runs on. |
|
227 ///\param in An edge map containing the cost of the edges. |
|
228 ///\par |
|
229 ///The cost type can be any type satisfying the |
|
230 ///STL 'LessThan Comparable' |
|
231 ///concept if it also has an operator+() implemented. (It is necessary for |
|
232 ///computing the total cost of the tree). |
|
233 /// |
|
234 /// \retval out This must be a writable \c bool edge map. |
|
235 /// After running the algorithm |
|
236 /// this will contain the found minimum cost spanning tree: the value of an |
|
237 /// edge will be set to \c true if it belongs to the tree, otherwise it will |
|
238 /// be set to \c false. The value of each edge will be set exactly once. |
|
239 /// |
|
240 /// \return The cost of the found tree. |
|
241 |
|
242 |
|
243 template <typename Graph, typename EdgeCostMap, typename RetEdgeBoolMap> |
|
244 inline |
|
245 typename EdgeCostMap::ValueType |
|
246 kruskalEdgeMap(Graph const& G, |
|
247 EdgeCostMap const& in, |
|
248 RetEdgeBoolMap &out) { |
|
249 return kruskal(G, |
|
250 KruskalMapInput<Graph,EdgeCostMap>(G,in), |
|
251 out); |
|
252 } |
|
253 |
|
254 /// \brief Wrapper function to kruskal(). |
|
255 /// Input is from an edge map, output is an STL Sequence. |
|
256 /// |
|
257 /// Wrapper function to kruskal(). |
|
258 /// Input is from an edge map, output is an STL Sequence. |
|
259 /// |
|
260 ///\param G The type of the graph the algorithm runs on. |
|
261 ///\param in An edge map containing the cost of the edges. |
|
262 ///\par |
|
263 ///The cost type can be any type satisfying the |
|
264 ///STL 'LessThan Comparable' |
|
265 ///concept if it also has an operator+() implemented. (It is necessary for |
|
266 ///computing the total cost of the tree). |
|
267 /// |
|
268 /// \retval out This must be an iteraror of an STL Container with |
|
269 /// <tt>Graph::Edge</tt> as its <tt>value_type</tt>. |
|
270 /// The algorithm copies the elements of the found tree into this sequence. |
|
271 /// For example, if we know that the spanning tree of the graph \c G has |
|
272 /// say 53 edges then |
|
273 /// we can put its edges into a vector \c tree with a code like this. |
|
274 /// \code |
|
275 /// std::vector<Edge> tree(53); |
|
276 /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin()); |
|
277 /// \endcode |
|
278 /// Or if we don't know in advance the size of the tree, we can write this. |
|
279 /// \code |
|
280 /// std::vector<Edge> tree; |
|
281 /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree)); |
|
282 /// \endcode |
|
283 /// |
|
284 /// \return The cost of the found tree. |
|
285 /// |
|
286 /// \bug its name does not follow the coding style. |
|
287 template <typename Graph, typename EdgeCostMap, typename RetIterator> |
|
288 inline |
|
289 typename EdgeCostMap::ValueType |
|
290 kruskalEdgeMap_IteratorOut(const Graph& G, |
|
291 const EdgeCostMap& in, |
|
292 RetIterator out) |
|
293 { |
|
294 SequenceOutput<RetIterator> _out(out); |
|
295 return kruskal(G, |
|
296 KruskalMapInput<Graph, EdgeCostMap>(G, in), |
|
297 _out); |
|
298 } |
|
299 |
|
300 /// @} |
|
301 |
|
302 } //namespace hugo |
|
303 |
|
304 #endif //HUGO_KRUSKAL_H |