lemon/bits/bezier.h
changeset 2194 eaf16c8f6fef
child 2207 75a29ac69c19
equal deleted inserted replaced
-1:000000000000 0:83687c6e27ef
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2006
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_BEZIER_H
       
    20 #define LEMON_BEZIER_H
       
    21 
       
    22 ///\ingroup misc
       
    23 ///\file
       
    24 ///\brief Classes to compute with Bezier curves.
       
    25 ///
       
    26 ///Up to now this file is used internally by \ref graph_to_eps.h
       
    27 ///
       
    28 ///\author Alpar Juttner
       
    29 
       
    30 #include<lemon/xy.h>
       
    31 
       
    32 namespace lemon {
       
    33 
       
    34 class BezierBase {
       
    35 public:
       
    36   typedef xy<double> xy;
       
    37 protected:
       
    38   static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
       
    39 };
       
    40 
       
    41 class Bezier1 : public BezierBase
       
    42 {
       
    43 public:
       
    44   xy p1,p2;
       
    45 
       
    46   Bezier1() {}
       
    47   Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
       
    48   
       
    49   xy operator()(double t) const
       
    50   {
       
    51     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
       
    52     return conv(p1,p2,t);
       
    53   }
       
    54   Bezier1 before(double t) const
       
    55   {
       
    56     return Bezier1(p1,conv(p1,p2,t));
       
    57   }
       
    58   
       
    59   Bezier1 after(double t) const
       
    60   {
       
    61     return Bezier1(conv(p1,p2,t),p2);
       
    62   }
       
    63 
       
    64   Bezier1 revert() const { return Bezier1(p2,p1);}
       
    65   Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
       
    66   xy grad() const { return p2-p1; }
       
    67   xy norm() const { return rot90(p2-p1); }
       
    68   xy grad(double) const { return grad(); }
       
    69   xy norm(double t) const { return rot90(grad(t)); }
       
    70 };
       
    71 
       
    72 class Bezier2 : public BezierBase
       
    73 {
       
    74 public:
       
    75   xy p1,p2,p3;
       
    76 
       
    77   Bezier2() {}
       
    78   Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
       
    79   Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
       
    80   xy operator()(double t) const
       
    81   {
       
    82     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
       
    83     return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
       
    84   }
       
    85   Bezier2 before(double t) const
       
    86   {
       
    87     xy q(conv(p1,p2,t));
       
    88     xy r(conv(p2,p3,t));
       
    89     return Bezier2(p1,q,conv(q,r,t));
       
    90   }
       
    91   
       
    92   Bezier2 after(double t) const
       
    93   {
       
    94     xy q(conv(p1,p2,t));
       
    95     xy r(conv(p2,p3,t));
       
    96     return Bezier2(conv(q,r,t),r,p3);
       
    97   }
       
    98   Bezier2 revert() const { return Bezier2(p3,p2,p1);}
       
    99   Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
       
   100   Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
       
   101   Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
       
   102   xy grad(double t) const { return grad()(t); }
       
   103   xy norm(double t) const { return rot90(grad(t)); }
       
   104 };
       
   105 
       
   106 class Bezier3 : public BezierBase
       
   107 {
       
   108 public:
       
   109   xy p1,p2,p3,p4;
       
   110 
       
   111   Bezier3() {}
       
   112   Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
       
   113   Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
       
   114 			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
       
   115   Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
       
   116 			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
       
   117   
       
   118   xy operator()(double t) const 
       
   119     {
       
   120       //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
       
   121       return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
       
   122 	(3*t*t*(1-t))*p3+(t*t*t)*p4;
       
   123     }
       
   124   Bezier3 before(double t) const
       
   125     {
       
   126       xy p(conv(p1,p2,t));
       
   127       xy q(conv(p2,p3,t));
       
   128       xy r(conv(p3,p4,t));
       
   129       xy a(conv(p,q,t));
       
   130       xy b(conv(q,r,t));
       
   131       xy c(conv(a,b,t));
       
   132       return Bezier3(p1,p,a,c);
       
   133     }
       
   134   
       
   135   Bezier3 after(double t) const
       
   136     {
       
   137       xy p(conv(p1,p2,t));
       
   138       xy q(conv(p2,p3,t));
       
   139       xy r(conv(p3,p4,t));
       
   140       xy a(conv(p,q,t));
       
   141       xy b(conv(q,r,t));
       
   142       xy c(conv(a,b,t));
       
   143       return Bezier3(c,b,r,p4);
       
   144     }
       
   145   Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
       
   146   Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
       
   147   Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
       
   148   Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
       
   149 				  3.0*rot90(p3-p2),
       
   150 				  3.0*rot90(p4-p3)); }
       
   151   xy grad(double t) const { return grad()(t); }
       
   152   xy norm(double t) const { return rot90(grad(t)); }
       
   153 
       
   154   template<class R,class F,class S,class D>
       
   155   R recSplit(F &_f,const S &_s,D _d) const 
       
   156   {
       
   157     const xy a=(p1+p2)/2;
       
   158     const xy b=(p2+p3)/2;
       
   159     const xy c=(p3+p4)/2;
       
   160     const xy d=(a+b)/2;
       
   161     const xy e=(b+c)/2;
       
   162     const xy f=(d+e)/2;
       
   163     R f1=_f(Bezier3(p1,a,d,e),_d);
       
   164     R f2=_f(Bezier3(e,d,c,p4),_d);
       
   165     return _s(f1,f2);
       
   166   }
       
   167   
       
   168 };
       
   169 
       
   170 } //END OF NAMESPACE LEMON
       
   171 
       
   172 #endif // LEMON_BEZIER_H