|
1 // -*- C++ -*- |
|
2 /* |
|
3 preflow_hl2.h |
|
4 by jacint. |
|
5 Runs the highest label variant of the preflow push algorithm with |
|
6 running time O(n^2\sqrt(m)), with the 'empty level' and with the |
|
7 heuristic that the bound b on the active nodes is not increased |
|
8 only when b=0, when we put b=2*n-2. |
|
9 |
|
10 'A' is a parameter for the empty_level heuristic |
|
11 |
|
12 Member functions: |
|
13 |
|
14 void run() : runs the algorithm |
|
15 |
|
16 The following functions should be used after run() was already run. |
|
17 |
|
18 T maxflow() : returns the value of a maximum flow |
|
19 |
|
20 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) |
|
21 |
|
22 FlowMap allflow() : returns the fixed maximum flow x |
|
23 |
|
24 void mincut(CutMap& M) : sets M to the characteristic vector of a |
|
25 minimum cut. M should be a map of bools initialized to false. |
|
26 |
|
27 void min_mincut(CutMap& M) : sets M to the characteristic vector of the |
|
28 minimum min cut. M should be a map of bools initialized to false. |
|
29 |
|
30 void max_mincut(CutMap& M) : sets M to the characteristic vector of the |
|
31 maximum min cut. M should be a map of bools initialized to false. |
|
32 |
|
33 */ |
|
34 |
|
35 #ifndef PREFLOW_HL2_H |
|
36 #define PREFLOW_HL2_H |
|
37 |
|
38 #define A 1 |
|
39 |
|
40 #include <vector> |
|
41 #include <stack> |
|
42 #include <queue> |
|
43 |
|
44 namespace marci { |
|
45 |
|
46 template <typename Graph, typename T, |
|
47 typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, |
|
48 typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> > |
|
49 class preflow_hl2 { |
|
50 |
|
51 typedef typename Graph::NodeIt NodeIt; |
|
52 typedef typename Graph::EdgeIt EdgeIt; |
|
53 typedef typename Graph::EachNodeIt EachNodeIt; |
|
54 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
55 typedef typename Graph::InEdgeIt InEdgeIt; |
|
56 |
|
57 Graph& G; |
|
58 NodeIt s; |
|
59 NodeIt t; |
|
60 FlowMap flow; |
|
61 CapMap& capacity; |
|
62 T value; |
|
63 |
|
64 public: |
|
65 |
|
66 preflow_hl2(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) : |
|
67 G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { } |
|
68 |
|
69 |
|
70 void run() { |
|
71 |
|
72 bool no_end=true; |
|
73 int n=G.nodeNum(); |
|
74 int b=n-2; |
|
75 /* |
|
76 b is a bound on the highest level of an active node. |
|
77 In the beginning it is at most n-2. |
|
78 */ |
|
79 |
|
80 IntMap level(G,n); |
|
81 TMap excess(G); |
|
82 |
|
83 std::vector<int> numb(n+1); |
|
84 /* |
|
85 The number of nodes on level i < n. It is |
|
86 initialized to n+1, because of the reverse_bfs-part. |
|
87 */ |
|
88 |
|
89 std::vector<std::stack<NodeIt> > stack(2*n-1); |
|
90 //Stack of the active nodes in level i. |
|
91 |
|
92 |
|
93 /*Reverse_bfs from t, to find the starting level.*/ |
|
94 level.set(t,0); |
|
95 std::queue<NodeIt> bfs_queue; |
|
96 bfs_queue.push(t); |
|
97 |
|
98 while (!bfs_queue.empty()) { |
|
99 |
|
100 NodeIt v=bfs_queue.front(); |
|
101 bfs_queue.pop(); |
|
102 int l=level.get(v)+1; |
|
103 |
|
104 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
105 NodeIt w=G.tail(e); |
|
106 if ( level.get(w) == n ) { |
|
107 bfs_queue.push(w); |
|
108 ++numb[l]; |
|
109 level.set(w, l); |
|
110 } |
|
111 } |
|
112 } |
|
113 |
|
114 level.set(s,n); |
|
115 |
|
116 |
|
117 |
|
118 /* Starting flow. It is everywhere 0 at the moment. */ |
|
119 for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) |
|
120 { |
|
121 if ( capacity.get(e) == 0 ) continue; |
|
122 NodeIt w=G.head(e); |
|
123 if ( w!=s ) { |
|
124 if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); |
|
125 flow.set(e, capacity.get(e)); |
|
126 excess.set(w, excess.get(w)+capacity.get(e)); |
|
127 } |
|
128 } |
|
129 |
|
130 /* |
|
131 End of preprocessing |
|
132 */ |
|
133 |
|
134 |
|
135 |
|
136 /* |
|
137 Push/relabel on the highest level active nodes. |
|
138 */ |
|
139 /*While there exists an active node.*/ |
|
140 while (b) { |
|
141 if ( stack[b].empty() ) { |
|
142 if ( b==1 ) { |
|
143 if ( !no_end ) break; |
|
144 else { |
|
145 b=2*n-2; |
|
146 no_end=false; |
|
147 } |
|
148 } |
|
149 --b; |
|
150 } else { |
|
151 |
|
152 no_end=true; |
|
153 |
|
154 NodeIt w=stack[b].top(); //w is a highest label active node. |
|
155 stack[b].pop(); |
|
156 int lev=level.get(w); |
|
157 int exc=excess.get(w); |
|
158 int newlevel=2*n-2; //In newlevel we bound the next level of w. |
|
159 |
|
160 // if ( level.get(w) < n ) { //Nem tudom ez mukodik-e |
|
161 for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) { |
|
162 |
|
163 if ( flow.get(e) == capacity.get(e) ) continue; |
|
164 NodeIt v=G.head(e); |
|
165 //e=wv |
|
166 |
|
167 if( lev > level.get(v) ) { |
|
168 /*Push is allowed now*/ |
|
169 |
|
170 if ( excess.get(v)==0 && v != s && v !=t ) |
|
171 stack[level.get(v)].push(v); |
|
172 /*v becomes active.*/ |
|
173 |
|
174 int cap=capacity.get(e); |
|
175 int flo=flow.get(e); |
|
176 int remcap=cap-flo; |
|
177 |
|
178 if ( remcap >= exc ) { |
|
179 /*A nonsaturating push.*/ |
|
180 |
|
181 flow.set(e, flo+exc); |
|
182 excess.set(v, excess.get(v)+exc); |
|
183 exc=0; |
|
184 break; |
|
185 |
|
186 } else { |
|
187 /*A saturating push.*/ |
|
188 |
|
189 flow.set(e, cap ); |
|
190 excess.set(v, excess.get(v)+remcap); |
|
191 exc-=remcap; |
|
192 } |
|
193 } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
|
194 |
|
195 } //for out edges wv |
|
196 |
|
197 |
|
198 if ( exc > 0 ) { |
|
199 for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) { |
|
200 |
|
201 if( flow.get(e) == 0 ) continue; |
|
202 NodeIt v=G.tail(e); |
|
203 //e=vw |
|
204 |
|
205 if( lev > level.get(v) ) { |
|
206 /*Push is allowed now*/ |
|
207 |
|
208 if ( excess.get(v)==0 && v != s && v !=t) |
|
209 stack[level.get(v)].push(v); |
|
210 /*v becomes active.*/ |
|
211 |
|
212 int flo=flow.get(e); |
|
213 |
|
214 if ( flo >= exc ) { |
|
215 /*A nonsaturating push.*/ |
|
216 |
|
217 flow.set(e, flo-exc); |
|
218 excess.set(v, excess.get(v)+exc); |
|
219 exc=0; |
|
220 break; |
|
221 } else { |
|
222 /*A saturating push.*/ |
|
223 |
|
224 excess.set(v, excess.get(v)+flo); |
|
225 exc-=flo; |
|
226 flow.set(e,0); |
|
227 } |
|
228 } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
|
229 |
|
230 } //for in edges vw |
|
231 |
|
232 } // if w still has excess after the out edge for cycle |
|
233 |
|
234 excess.set(w, exc); |
|
235 |
|
236 |
|
237 /* |
|
238 Relabel |
|
239 */ |
|
240 |
|
241 if ( exc > 0 ) { |
|
242 //now 'lev' is the old level of w |
|
243 level.set(w,++newlevel); |
|
244 |
|
245 if ( lev < n ) { |
|
246 --numb[lev]; |
|
247 |
|
248 if ( !numb[lev] && lev < A*n ) { //If the level of w gets empty. |
|
249 |
|
250 for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) { |
|
251 if (level.get(v) > lev && level.get(v) < n ) level.set(v,n); |
|
252 } |
|
253 for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; |
|
254 if ( newlevel < n ) newlevel=n; |
|
255 } else { |
|
256 if ( newlevel < n ) ++numb[newlevel]; |
|
257 } |
|
258 } |
|
259 |
|
260 stack[newlevel].push(w); |
|
261 |
|
262 } |
|
263 |
|
264 } // if stack[b] is nonempty |
|
265 |
|
266 } // while(b) |
|
267 |
|
268 |
|
269 value = excess.get(t); |
|
270 /*Max flow value.*/ |
|
271 |
|
272 |
|
273 } //void run() |
|
274 |
|
275 |
|
276 |
|
277 |
|
278 |
|
279 /* |
|
280 Returns the maximum value of a flow. |
|
281 */ |
|
282 |
|
283 T maxflow() { |
|
284 return value; |
|
285 } |
|
286 |
|
287 |
|
288 |
|
289 /* |
|
290 For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). |
|
291 */ |
|
292 |
|
293 T flowonedge(EdgeIt e) { |
|
294 return flow.get(e); |
|
295 } |
|
296 |
|
297 |
|
298 |
|
299 /* |
|
300 Returns the maximum flow x found by the algorithm. |
|
301 */ |
|
302 |
|
303 FlowMap allflow() { |
|
304 return flow; |
|
305 } |
|
306 |
|
307 |
|
308 |
|
309 |
|
310 /* |
|
311 Returns the minimum min cut, by a bfs from s in the residual graph. |
|
312 */ |
|
313 |
|
314 template<typename CutMap> |
|
315 void mincut(CutMap& M) { |
|
316 |
|
317 std::queue<NodeIt> queue; |
|
318 |
|
319 M.set(s,true); |
|
320 queue.push(s); |
|
321 |
|
322 while (!queue.empty()) { |
|
323 NodeIt w=queue.front(); |
|
324 queue.pop(); |
|
325 |
|
326 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
327 NodeIt v=G.head(e); |
|
328 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
329 queue.push(v); |
|
330 M.set(v, true); |
|
331 } |
|
332 } |
|
333 |
|
334 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
335 NodeIt v=G.tail(e); |
|
336 if (!M.get(v) && flow.get(e) > 0 ) { |
|
337 queue.push(v); |
|
338 M.set(v, true); |
|
339 } |
|
340 } |
|
341 |
|
342 } |
|
343 |
|
344 } |
|
345 |
|
346 |
|
347 |
|
348 /* |
|
349 Returns the maximum min cut, by a reverse bfs |
|
350 from t in the residual graph. |
|
351 */ |
|
352 |
|
353 template<typename CutMap> |
|
354 void max_mincut(CutMap& M) { |
|
355 |
|
356 std::queue<NodeIt> queue; |
|
357 |
|
358 M.set(t,true); |
|
359 queue.push(t); |
|
360 |
|
361 while (!queue.empty()) { |
|
362 NodeIt w=queue.front(); |
|
363 queue.pop(); |
|
364 |
|
365 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
366 NodeIt v=G.tail(e); |
|
367 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
368 queue.push(v); |
|
369 M.set(v, true); |
|
370 } |
|
371 } |
|
372 |
|
373 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
374 NodeIt v=G.head(e); |
|
375 if (!M.get(v) && flow.get(e) > 0 ) { |
|
376 queue.push(v); |
|
377 M.set(v, true); |
|
378 } |
|
379 } |
|
380 } |
|
381 |
|
382 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) { |
|
383 M.set(v, !M.get(v)); |
|
384 } |
|
385 |
|
386 } |
|
387 |
|
388 |
|
389 |
|
390 template<typename CutMap> |
|
391 void min_mincut(CutMap& M) { |
|
392 mincut(M); |
|
393 } |
|
394 |
|
395 |
|
396 |
|
397 }; |
|
398 }//namespace marci |
|
399 #endif |
|
400 |
|
401 |
|
402 |
|
403 |