lemon/gomory_hu_tree.h
changeset 2550 f26368148b9c
child 2553 bfced05fa852
equal deleted inserted replaced
-1:000000000000 0:8101bd106398
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2007
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_GOMORY_HU_TREE_H
       
    20 #define LEMON_GOMORY_HU_TREE_H
       
    21 
       
    22 #include <lemon/preflow.h>
       
    23 #include <lemon/concept_check.h>
       
    24 #include <lemon/concepts/maps.h>
       
    25 
       
    26 /// \ingroup min_cut
       
    27 /// \file 
       
    28 /// \brief Gomory-Hu cut tree in undirected graphs.
       
    29 
       
    30 namespace lemon {
       
    31 
       
    32   /// \ingroup min_cut
       
    33   ///
       
    34   /// \brief Gomory-Hu cut tree algorithm
       
    35   ///
       
    36   /// The Gomory-Hu tree is a tree on the nodeset of the graph, but it
       
    37   /// may contain edges which are not in the original graph. It helps
       
    38   /// to calculate the minimum cut between all pairs of nodes, because
       
    39   /// the minimum capacity edge on the tree path between two nodes has
       
    40   /// the same weight as the minimum cut in the graph between these
       
    41   /// nodes. Moreover this edge separates the nodes to two parts which
       
    42   /// determine this minimum cut.
       
    43   /// 
       
    44   /// The algorithm calculates \e n-1 distinict minimum cuts with
       
    45   /// preflow algorithm, therefore the algorithm has
       
    46   /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
       
    47   /// rooted Gomory-Hu tree, the structure of the tree and the weights
       
    48   /// can be obtained with \c predNode() and \c predValue()
       
    49   /// functions. The \c minCutValue() and \c minCutMap() calculates
       
    50   /// the minimum cut and the minimum cut value between any two node
       
    51   /// in the graph.
       
    52   template <typename _UGraph, 
       
    53 	    typename _Capacity = typename _UGraph::template UEdgeMap<int> >
       
    54   class GomoryHuTree {
       
    55   public:
       
    56 
       
    57     /// The undirected graph type
       
    58     typedef _UGraph UGraph;
       
    59     /// The capacity on undirected edges
       
    60     typedef _Capacity Capacity;
       
    61     /// The value type of capacities
       
    62     typedef typename Capacity::Value Value;
       
    63     
       
    64   private:
       
    65 
       
    66     UGRAPH_TYPEDEFS(typename UGraph);
       
    67 
       
    68     const UGraph& _ugraph;
       
    69     const Capacity& _capacity;
       
    70 
       
    71     Node _root;
       
    72     typename UGraph::template NodeMap<Node>* _pred;
       
    73     typename UGraph::template NodeMap<Value>* _weight;
       
    74     typename UGraph::template NodeMap<int>* _order;
       
    75 
       
    76     void createStructures() {
       
    77       if (!_pred) {
       
    78 	_pred = new typename UGraph::template NodeMap<Node>(_ugraph);
       
    79       }
       
    80       if (!_weight) {
       
    81 	_weight = new typename UGraph::template NodeMap<Value>(_ugraph);
       
    82       }
       
    83       if (!_order) {
       
    84 	_order = new typename UGraph::template NodeMap<int>(_ugraph);
       
    85       }
       
    86     }
       
    87 
       
    88     void destroyStructures() {
       
    89       if (_pred) {
       
    90 	delete _pred;
       
    91       }
       
    92       if (_weight) {
       
    93 	delete _weight;
       
    94       }
       
    95       if (_order) {
       
    96 	delete _order;
       
    97       }
       
    98     }
       
    99   
       
   100   public:
       
   101 
       
   102     /// \brief Constructor
       
   103     ///
       
   104     /// Constructor
       
   105     /// \param ugraph The undirected graph type.
       
   106     /// \param capacity The capacity map.
       
   107     GomoryHuTree(const UGraph& ugraph, const Capacity& capacity) 
       
   108       : _ugraph(ugraph), _capacity(capacity),
       
   109 	_pred(0), _weight(0), _order(0) 
       
   110     {
       
   111       checkConcept<concepts::ReadMap<UEdge, Value>, Capacity>();
       
   112     }
       
   113 
       
   114 
       
   115     /// \brief Destructor
       
   116     ///
       
   117     /// Destructor
       
   118     ~GomoryHuTree() {
       
   119       destroyStructures();
       
   120     }
       
   121 
       
   122     /// \brief Initializes the internal data structures.
       
   123     ///
       
   124     /// Initializes the internal data structures.
       
   125     ///
       
   126     void init() {
       
   127       createStructures();
       
   128 
       
   129       _root = NodeIt(_ugraph);
       
   130       for (NodeIt n(_ugraph); n != INVALID; ++n) {
       
   131 	_pred->set(n, _root);
       
   132 	_order->set(n, -1);
       
   133       }
       
   134       _pred->set(_root, INVALID);
       
   135       _weight->set(_root, std::numeric_limits<Value>::max()); 
       
   136     }
       
   137 
       
   138 
       
   139     /// \brief Starts the algorithm
       
   140     ///
       
   141     /// Starts the algorithm.
       
   142     void start() {
       
   143       Preflow<UGraph, Capacity> fa(_ugraph, _capacity, _root, INVALID);
       
   144 
       
   145       for (NodeIt n(_ugraph); n != INVALID; ++n) {
       
   146 	if (n == _root) continue;
       
   147 
       
   148 	Node pn = (*_pred)[n];
       
   149 	fa.source(n);
       
   150 	fa.target(pn);
       
   151 
       
   152 	fa.runMinCut();
       
   153 
       
   154 	_weight->set(n, fa.flowValue());
       
   155 
       
   156 	for (NodeIt nn(_ugraph); nn != INVALID; ++nn) {
       
   157 	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
       
   158 	    _pred->set(nn, n);
       
   159 	  }
       
   160 	}
       
   161 	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
       
   162 	  _pred->set(n, (*_pred)[pn]);
       
   163 	  _pred->set(pn, n);
       
   164 	  _weight->set(n, (*_weight)[pn]);
       
   165 	  _weight->set(pn, fa.flowValue());	
       
   166 	}
       
   167       }
       
   168 
       
   169       _order->set(_root, 0);
       
   170       int index = 1;
       
   171 
       
   172       for (NodeIt n(_ugraph); n != INVALID; ++n) {
       
   173 	std::vector<Node> st;
       
   174 	Node nn = n;
       
   175 	while ((*_order)[nn] == -1) {
       
   176 	  st.push_back(nn);
       
   177 	  nn = (*_pred)[nn];
       
   178 	}
       
   179 	while (!st.empty()) {
       
   180 	  _order->set(st.back(), index++);
       
   181 	  st.pop_back();
       
   182 	}
       
   183       }
       
   184     }
       
   185 
       
   186     /// \brief Runs the Gomory-Hu algorithm.  
       
   187     ///
       
   188     /// Runs the Gomory-Hu algorithm.
       
   189     /// \note gh.run() is just a shortcut of the following code.
       
   190     /// \code
       
   191     ///   ght.init();
       
   192     ///   ght.start();
       
   193     /// \endcode
       
   194     void run() {
       
   195       init();
       
   196       start();
       
   197     }
       
   198 
       
   199     /// \brief Returns the predecessor node in the Gomory-Hu tree.
       
   200     ///
       
   201     /// Returns the predecessor node in the Gomory-Hu tree. If the node is
       
   202     /// the root of the Gomory-Hu tree, then it returns \c INVALID.
       
   203     Node predNode(const Node& node) {
       
   204       return (*_pred)[node];
       
   205     }
       
   206 
       
   207     /// \brief Returns the weight of the predecessor edge in the
       
   208     /// Gomory-Hu tree.
       
   209     ///
       
   210     /// Returns the weight of the predecessor edge in the Gomory-Hu
       
   211     /// tree.  If the node is the root of the Gomory-Hu tree, the
       
   212     /// result is undefined.
       
   213     Value predValue(const Node& node) {
       
   214       return (*_weight)[node];
       
   215     }
       
   216 
       
   217     /// \brief Returns the minimum cut value between two nodes
       
   218     ///
       
   219     /// Returns the minimum cut value between two nodes. The
       
   220     /// algorithm finds the nearest common ancestor in the Gomory-Hu
       
   221     /// tree and calculates the minimum weight edge on the paths to
       
   222     /// the ancestor.
       
   223     Value minCutValue(const Node& s, const Node& t) const {
       
   224       Node sn = s, tn = t;
       
   225       Value value = std::numeric_limits<Value>::max();
       
   226       
       
   227       while (sn != tn) {
       
   228 	if ((*_order)[sn] < (*_order)[tn]) {
       
   229 	  if ((*_weight)[tn] < value) value = (*_weight)[tn];
       
   230 	  tn = (*_pred)[tn];
       
   231 	} else {
       
   232 	  if ((*_weight)[sn] < value) value = (*_weight)[sn];
       
   233 	  sn = (*_pred)[sn];
       
   234 	}
       
   235       }
       
   236       return value;
       
   237     }
       
   238 
       
   239     /// \brief Returns the minimum cut between two nodes
       
   240     ///
       
   241     /// Returns the minimum cut value between two nodes. The
       
   242     /// algorithm finds the nearest common ancestor in the Gomory-Hu
       
   243     /// tree and calculates the minimum weight edge on the paths to
       
   244     /// the ancestor. Then it sets all nodes to the cut determined by
       
   245     /// this edge. The \c cutMap should be \ref concepts::ReadWriteMap
       
   246     /// "ReadWriteMap".
       
   247     template <typename CutMap>
       
   248     Value minCutMap(const Node& s, const Node& t, CutMap& cutMap) const {
       
   249       Node sn = s, tn = t;
       
   250 
       
   251       Node rn = INVALID;
       
   252       Value value = std::numeric_limits<Value>::max();
       
   253       
       
   254       while (sn != tn) {
       
   255 	if ((*_order)[sn] < (*_order)[tn]) {
       
   256 	  if ((*_weight)[tn] < value) {
       
   257 	    rn = tn;
       
   258 	    value = (*_weight)[tn];
       
   259 	  }
       
   260 	  tn = (*_pred)[tn];
       
   261 	} else {
       
   262 	  if ((*_weight)[sn] < value) {
       
   263 	    rn = sn;
       
   264 	    value = (*_weight)[sn];
       
   265 	  }
       
   266 	  sn = (*_pred)[sn];
       
   267 	}
       
   268       }
       
   269 
       
   270       typename UGraph::template NodeMap<bool> reached(_ugraph, false);
       
   271       reached.set(_root, true);
       
   272       cutMap.set(_root, false);
       
   273       reached.set(rn, true);
       
   274       cutMap.set(rn, true);
       
   275 
       
   276       for (NodeIt n(_ugraph); n != INVALID; ++n) {
       
   277 	std::vector<Node> st;
       
   278 	Node nn = n;
       
   279 	while (!reached[nn]) {
       
   280 	  st.push_back(nn);
       
   281 	  nn = (*_pred)[nn];
       
   282 	}
       
   283 	while (!st.empty()) {
       
   284 	  cutMap.set(st.back(), cutMap[nn]);
       
   285 	  st.pop_back();
       
   286 	}
       
   287       }
       
   288       
       
   289       return value;
       
   290     }
       
   291 
       
   292   };
       
   293 
       
   294 }
       
   295 
       
   296 #endif