|
1 // -*- C++ -*- |
|
2 #ifndef HUGO_BFS_H |
|
3 #define HUGO_BFS_H |
|
4 |
|
5 ///\ingroup flowalgs |
|
6 ///\file |
|
7 ///\brief Bfs algorithm. |
|
8 /// |
|
9 ///\todo Revise Manual. |
|
10 |
|
11 #include <hugo/bin_heap.h> |
|
12 #include <hugo/invalid.h> |
|
13 |
|
14 namespace hugo { |
|
15 |
|
16 /// \addtogroup flowalgs |
|
17 /// @{ |
|
18 |
|
19 ///%Bfs algorithm class. |
|
20 |
|
21 ///This class provides an efficient implementation of %Bfs algorithm. |
|
22 ///The edge lengths are passed to the algorithm using a |
|
23 ///\ref ReadMapSkeleton "readable map", |
|
24 ///so it is easy to change it to any kind of length. |
|
25 /// |
|
26 ///The type of the length is determined by the \c ValueType of the length map. |
|
27 /// |
|
28 ///It is also possible to change the underlying priority heap. |
|
29 /// |
|
30 ///\param GR The graph type the algorithm runs on. |
|
31 ///\param LM This read-only |
|
32 ///EdgeMap |
|
33 ///determines the |
|
34 ///lengths of the edges. It is read once for each edge, so the map |
|
35 ///may involve in relatively time consuming process to compute the edge |
|
36 ///length if it is necessary. The default map type is |
|
37 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" |
|
38 ///\param Heap The heap type used by the %Bfs |
|
39 ///algorithm. The default |
|
40 ///is using \ref BinHeap "binary heap". |
|
41 /// |
|
42 ///\author Jacint Szabo and Alpar Juttner |
|
43 ///\todo We need a typedef-names should be standardized. (-: |
|
44 ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap |
|
45 ///should not be fixed. (Problematic to solve). |
|
46 |
|
47 #ifdef DOXYGEN |
|
48 template <typename GR> |
|
49 #else |
|
50 template <typename GR> |
|
51 #endif |
|
52 class Bfs{ |
|
53 public: |
|
54 ///The type of the underlying graph. |
|
55 typedef GR Graph; |
|
56 typedef typename Graph::Node Node; |
|
57 typedef typename Graph::NodeIt NodeIt; |
|
58 typedef typename Graph::Edge Edge; |
|
59 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
60 |
|
61 ///\brief The type of the map that stores the last |
|
62 ///edges of the shortest paths. |
|
63 typedef typename Graph::template NodeMap<Edge> PredMap; |
|
64 ///\brief The type of the map that stores the last but one |
|
65 ///nodes of the shortest paths. |
|
66 typedef typename Graph::template NodeMap<Node> PredNodeMap; |
|
67 ///The type of the map that stores the dists of the nodes. |
|
68 typedef typename Graph::template NodeMap<int> DistMap; |
|
69 |
|
70 private: |
|
71 const Graph *G; |
|
72 PredMap *predecessor; |
|
73 bool local_predecessor; |
|
74 PredNodeMap *pred_node; |
|
75 bool local_pred_node; |
|
76 DistMap *distance; |
|
77 bool local_distance; |
|
78 |
|
79 //The source node of the last execution. |
|
80 Node source; |
|
81 |
|
82 |
|
83 ///Initialize maps. |
|
84 |
|
85 ///\todo Error if \c G or are \c NULL. |
|
86 ///\todo Better memory allocation (instead of new). |
|
87 void init_maps() |
|
88 { |
|
89 // if(!length) { |
|
90 // local_length = true; |
|
91 // length = new LM(G); |
|
92 // } |
|
93 if(!predecessor) { |
|
94 local_predecessor = true; |
|
95 predecessor = new PredMap(*G); |
|
96 } |
|
97 if(!pred_node) { |
|
98 local_pred_node = true; |
|
99 pred_node = new PredNodeMap(*G); |
|
100 } |
|
101 if(!distance) { |
|
102 local_distance = true; |
|
103 distance = new DistMap(*G); |
|
104 } |
|
105 } |
|
106 |
|
107 public : |
|
108 Bfs(const Graph& _G) : |
|
109 G(&_G), |
|
110 predecessor(NULL), local_predecessor(false), |
|
111 pred_node(NULL), local_pred_node(false), |
|
112 distance(NULL), local_distance(false) |
|
113 { } |
|
114 |
|
115 ~Bfs() |
|
116 { |
|
117 // if(local_length) delete length; |
|
118 if(local_predecessor) delete predecessor; |
|
119 if(local_pred_node) delete pred_node; |
|
120 if(local_distance) delete distance; |
|
121 } |
|
122 |
|
123 ///Sets the graph the algorithm will run on. |
|
124 |
|
125 ///Sets the graph the algorithm will run on. |
|
126 ///\return <tt> (*this) </tt> |
|
127 Bfs &setGraph(const Graph &_G) |
|
128 { |
|
129 G = &_G; |
|
130 return *this; |
|
131 } |
|
132 ///Sets the length map. |
|
133 |
|
134 ///Sets the map storing the predecessor edges. |
|
135 |
|
136 ///Sets the map storing the predecessor edges. |
|
137 ///If you don't use this function before calling \ref run(), |
|
138 ///it will allocate one. The destuctor deallocates this |
|
139 ///automatically allocated map, of course. |
|
140 ///\return <tt> (*this) </tt> |
|
141 Bfs &setPredMap(PredMap &m) |
|
142 { |
|
143 if(local_predecessor) { |
|
144 delete predecessor; |
|
145 local_predecessor=false; |
|
146 } |
|
147 predecessor = &m; |
|
148 return *this; |
|
149 } |
|
150 |
|
151 ///Sets the map storing the predecessor nodes. |
|
152 |
|
153 ///Sets the map storing the predecessor nodes. |
|
154 ///If you don't use this function before calling \ref run(), |
|
155 ///it will allocate one. The destuctor deallocates this |
|
156 ///automatically allocated map, of course. |
|
157 ///\return <tt> (*this) </tt> |
|
158 Bfs &setPredNodeMap(PredNodeMap &m) |
|
159 { |
|
160 if(local_pred_node) { |
|
161 delete pred_node; |
|
162 local_pred_node=false; |
|
163 } |
|
164 pred_node = &m; |
|
165 return *this; |
|
166 } |
|
167 |
|
168 ///Sets the map storing the distances calculated by the algorithm. |
|
169 |
|
170 ///Sets the map storing the distances calculated by the algorithm. |
|
171 ///If you don't use this function before calling \ref run(), |
|
172 ///it will allocate one. The destuctor deallocates this |
|
173 ///automatically allocated map, of course. |
|
174 ///\return <tt> (*this) </tt> |
|
175 Bfs &setDistMap(DistMap &m) |
|
176 { |
|
177 if(local_distance) { |
|
178 delete distance; |
|
179 local_distance=false; |
|
180 } |
|
181 distance = &m; |
|
182 return *this; |
|
183 } |
|
184 |
|
185 ///Runs %BFS algorithm from node \c s. |
|
186 |
|
187 ///This method runs the %BFS algorithm from a root node \c s |
|
188 ///in order to |
|
189 ///compute the |
|
190 ///shortest path to each node. The algorithm computes |
|
191 ///- The shortest path tree. |
|
192 ///- The distance of each node from the root. |
|
193 |
|
194 void run(Node s) { |
|
195 |
|
196 init_maps(); |
|
197 |
|
198 source = s; |
|
199 |
|
200 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
|
201 predecessor->set(u,INVALID); |
|
202 pred_node->set(u,INVALID); |
|
203 } |
|
204 |
|
205 int N=G->nodeNum(); |
|
206 std::vector<typename Graph::Node> Q(N); |
|
207 int Qh=0; |
|
208 int Qt=0; |
|
209 |
|
210 Q[Qh++]=source; |
|
211 distance->set(s, 0); |
|
212 do { |
|
213 Node m; |
|
214 Node n=Q[Qt++]; |
|
215 int d= (*distance)[n]+1; |
|
216 |
|
217 for(OutEdgeIt e(*G,n);e!=INVALID;++e) |
|
218 if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) { |
|
219 Q[Qh++]=m; |
|
220 predecessor->set(m,e); |
|
221 pred_node->set(m,n); |
|
222 distance->set(m,d); |
|
223 } |
|
224 } while(Qt!=Qh); |
|
225 } |
|
226 |
|
227 ///The distance of a node from the root. |
|
228 |
|
229 ///Returns the distance of a node from the root. |
|
230 ///\pre \ref run() must be called before using this function. |
|
231 ///\warning If node \c v in unreachable from the root the return value |
|
232 ///of this funcion is undefined. |
|
233 int dist(Node v) const { return (*distance)[v]; } |
|
234 |
|
235 ///Returns the 'previous edge' of the shortest path tree. |
|
236 |
|
237 ///For a node \c v it returns the 'previous edge' of the shortest path tree, |
|
238 ///i.e. it returns the last edge from a shortest path from the root to \c |
|
239 ///v. It is \ref INVALID |
|
240 ///if \c v is unreachable from the root or if \c v=s. The |
|
241 ///shortest path tree used here is equal to the shortest path tree used in |
|
242 ///\ref predNode(Node v). \pre \ref run() must be called before using |
|
243 ///this function. |
|
244 Edge pred(Node v) const { return (*predecessor)[v]; } |
|
245 |
|
246 ///Returns the 'previous node' of the shortest path tree. |
|
247 |
|
248 ///For a node \c v it returns the 'previous node' of the shortest path tree, |
|
249 ///i.e. it returns the last but one node from a shortest path from the |
|
250 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
|
251 ///\c v=s. The shortest path tree used here is equal to the shortest path |
|
252 ///tree used in \ref pred(Node v). \pre \ref run() must be called before |
|
253 ///using this function. |
|
254 Node predNode(Node v) const { return (*pred_node)[v]; } |
|
255 |
|
256 ///Returns a reference to the NodeMap of distances. |
|
257 |
|
258 ///Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
259 ///be called before using this function. |
|
260 const DistMap &distMap() const { return *distance;} |
|
261 |
|
262 ///Returns a reference to the shortest path tree map. |
|
263 |
|
264 ///Returns a reference to the NodeMap of the edges of the |
|
265 ///shortest path tree. |
|
266 ///\pre \ref run() must be called before using this function. |
|
267 const PredMap &predMap() const { return *predecessor;} |
|
268 |
|
269 ///Returns a reference to the map of nodes of shortest paths. |
|
270 |
|
271 ///Returns a reference to the NodeMap of the last but one nodes of the |
|
272 ///shortest path tree. |
|
273 ///\pre \ref run() must be called before using this function. |
|
274 const PredNodeMap &predNodeMap() const { return *pred_node;} |
|
275 |
|
276 ///Checks if a node is reachable from the root. |
|
277 |
|
278 ///Returns \c true if \c v is reachable from the root. |
|
279 ///\warning The root node is reported to be reached! |
|
280 /// |
|
281 ///\pre \ref run() must be called before using this function. |
|
282 /// |
|
283 bool reached(Node v) { return v==source || (*predecessor)[v]==INVALID; } |
|
284 |
|
285 }; |
|
286 |
|
287 |
|
288 // ********************************************************************** |
|
289 // IMPLEMENTATIONS |
|
290 // ********************************************************************** |
|
291 |
|
292 /// @} |
|
293 |
|
294 } //END OF NAMESPACE HUGO |
|
295 |
|
296 #endif |
|
297 |
|
298 |