src/work/akos/simann.h
changeset 1139 f59038affc7e
parent 1023 3268fef5d623
child 1142 450f794dca81
equal deleted inserted replaced
6:5a3f66210c5c 7:37dcb90c4739
    96       curr_ent->revert();
    96       curr_ent->revert();
    97       curr_cost = prev_cost;
    97       curr_cost = prev_cost;
    98       prev_cost = prev_prev_cost;
    98       prev_cost = prev_prev_cost;
    99     }
    99     }
   100     void saveAsBest() {
   100     void saveAsBest() {
   101       *best_ent = *curr_ent;
   101       delete(best_ent);
       
   102       best_ent = new E(*curr_ent);
   102       best_cost = curr_cost;
   103       best_cost = curr_cost;
   103     }
   104     }
   104   };
   105   };
   105 
   106 
   106   class EntitySkeleton {
   107   class EntitySkeleton {
   127      *         not yield a better solution
   128      *         not yield a better solution
   128      *  \param _temp initial temperature
   129      *  \param _temp initial temperature
   129      *  \param _ann_fact annealing factor
   130      *  \param _ann_fact annealing factor
   130      */
   131      */
   131     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   132     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   132     double _temp = 1000, double _ann_fact = 0.9999) : iter(0), last_impr(0),
   133     double _temp = 1000.0, double _ann_fact = 0.9999) : iter(0), last_impr(0),
   133     max_iter(_max_iter), max_no_impr(_max_no_impr), temp(_temp),
   134     max_iter(_max_iter), max_no_impr(_max_no_impr), temp(_temp),
   134     ann_fact(_ann_fact) {}
   135     ann_fact(_ann_fact) {}
   135     void acceptEvent() {
   136     void acceptEvent() {
   136       iter++;
   137       iter++;
   137     }
   138     }
   147       return !quit;
   148       return !quit;
   148     }
   149     }
   149     bool accept() {
   150     bool accept() {
   150       double cost_diff = base->getPrevCost() - base->getCurrCost();
   151       double cost_diff = base->getPrevCost() - base->getCurrCost();
   151       if (cost_diff < 0.0) {
   152       if (cost_diff < 0.0) {
   152         return (drand48() <= exp(cost_diff / temp));
   153         bool ret = drand48() <= exp(cost_diff / temp);
       
   154         return ret;
   153       }
   155       }
   154       else {
   156       else {
   155         return true;
   157         return true;
   156       }
   158       }
   157     }
   159     }
   164   class AdvancedController : public SimAnnBase::Controller {
   166   class AdvancedController : public SimAnnBase::Controller {
   165   private:
   167   private:
   166     Timer timer;
   168     Timer timer;
   167     /*! \param time the elapsed time in seconds */
   169     /*! \param time the elapsed time in seconds */
   168     virtual double threshold(double time) {
   170     virtual double threshold(double time) {
   169       // this is the function 1 / log(x) scaled and offset
   171       // 1 / log(x)
       
   172       /*
   170       static double xm = 5.0 / end_time;
   173       static double xm = 5.0 / end_time;
   171       static double ym = start_threshold / (1 / log(1.2) - 1 / log(5.0 + 1.2));
   174       static double ym = start_threshold / (1 / log(1.2) - 1 / log(5.0 + 1.2));
   172       return ym * (1 / log(xm * time + 1.2) - 1 / log(5.0 + 1.2));
   175       return ym * (1 / log(xm * time + 1.2) - 1 / log(5.0 + 1.2));
       
   176       */
       
   177       return (-1.0) * start_threshold / end_time * time + start_threshold;
   173     }
   178     }
   174   public:
   179   public:
   175     double alpha, beta, gamma;
   180     double alpha, beta, gamma;
   176     double end_time, start_time;
   181     double end_time, start_time;
   177     double start_threshold;
   182     double start_threshold;
   182      *  \param _alpha parameter used to calculate the running average
   187      *  \param _alpha parameter used to calculate the running average
   183      *  \param _beta parameter used to decrease the annealing factor
   188      *  \param _beta parameter used to decrease the annealing factor
   184      *  \param _gamma parameter used to increase the temperature
   189      *  \param _gamma parameter used to increase the temperature
   185      */
   190      */
   186     AdvancedController(double _end_time, double _alpha = 0.2,
   191     AdvancedController(double _end_time, double _alpha = 0.2,
   187     double _beta = 0.9, double _gamma = 1.2) : alpha(_alpha), beta(_beta),
   192     double _beta = 0.9, double _gamma = 1.6) : alpha(_alpha), beta(_beta),
   188     gamma(_gamma), end_time(_end_time), ann_fact(0.9999), warmup(true) {}
   193     gamma(_gamma), end_time(_end_time), ann_fact(0.99999999), warmup(true) {}
   189     void init() {
   194     void init() {
   190       avg_cost = base->getCurrCost();
   195       avg_cost = base->getCurrCost();
   191     }
   196     }
   192     void acceptEvent() {
   197     void acceptEvent() {
   193       avg_cost = alpha * base->getCurrCost() + (1.0 - alpha) * avg_cost;
   198       avg_cost = alpha * base->getCurrCost() + (1.0 - alpha) * avg_cost;
   194       if (warmup) {
   199       if (warmup) {
   195         static double max_cost_diff = 0.0;
   200         static int cnt = 0;
   196         static int incr_cnt = 0;
   201         cnt++;
   197         double cost_diff = base->getCurrCost() - base->getPrevCost();
   202         if (cnt >= 100) {
   198         if (cost_diff > 0.0) {
       
   199           incr_cnt++;
       
   200           if (cost_diff > max_cost_diff) {
       
   201             max_cost_diff = cost_diff;
       
   202           }
       
   203         }
       
   204         if (incr_cnt >= 100) {
       
   205           // calculate starting threshold and starting temperature
   203           // calculate starting threshold and starting temperature
   206           start_threshold = fabs(base->getBestCost() - avg_cost);
   204           start_threshold = 5.0 * fabs(base->getBestCost() - avg_cost);
   207           temp = max_cost_diff / log(0.5);
   205           //temp = max_cost_diff / log(0.5);
       
   206           temp = 10000.0;
   208           warmup = false;
   207           warmup = false;
   209           timer.reset();
   208           timer.reset();
   210         }
   209         }
   211       }
   210       }
   212     }
   211     }
   225           ann_fact *= beta;
   224           ann_fact *= beta;
   226         }
   225         }
   227         else {
   226         else {
   228           // increase the temperature
   227           // increase the temperature
   229           temp *= gamma;
   228           temp *= gamma;
       
   229           ann_fact = 0.99999999;
   230         }
   230         }
   231         temp *= ann_fact;
   231         temp *= ann_fact;
   232         return elapsed_time < end_time;
   232         return elapsed_time < end_time;
   233       }
   233       }
   234     }
   234     }