src/work/jacint/dijkstra.hh
changeset 58 f71840c04b2a
child 78 ecc1171307be
equal deleted inserted replaced
-1:000000000000 0:bc253414aa1e
       
     1 /*
       
     2  *dijkstra
       
     3  *by jacint
       
     4  *Performs Dijkstra's algorithm from node s. 
       
     5  *
       
     6  *Constructor: 
       
     7  *
       
     8  *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance)
       
     9  *
       
    10  *
       
    11  *
       
    12  *Member functions:
       
    13  *
       
    14  *void run()
       
    15  *
       
    16  *  The following function should be used after run() was already run.
       
    17  *
       
    18  *
       
    19  *T dist(node_iterator v) : returns the distance from s to v. 
       
    20  *   It is 0 if v is not reachable from s.
       
    21  *
       
    22  *
       
    23  *edge_iterator pred(node_iterator v)
       
    24  *   Returns the last edge of a shortest s-v path. 
       
    25  *   Returns an invalid iterator if v=s or v is not
       
    26  *   reachable from s.
       
    27  *
       
    28  *
       
    29  *bool reach(node_iterator v) : true if v is reachable from s
       
    30  *
       
    31  *
       
    32  *
       
    33  *
       
    34  *
       
    35  *Problems: 
       
    36  * 
       
    37  *Heap implementation is needed, because the priority queue of stl
       
    38  *does not have a mathod for key-decrease, so we had to use here a 
       
    39  *g\'any solution.
       
    40  * 
       
    41  *The implementation of infinity would be desirable, see after line 100. 
       
    42  */
       
    43 
       
    44 #ifndef DIJKSTRA_HH
       
    45 #define DIJKSTRA_HH
       
    46 
       
    47 #include <queue>
       
    48 #include <algorithm>
       
    49 
       
    50 #include <marci_graph_traits.hh>
       
    51 #include <marci_property_vector.hh>
       
    52 
       
    53 
       
    54 namespace std {
       
    55   namespace marci {
       
    56 
       
    57 
       
    58 
       
    59 
       
    60 
       
    61     template <typename graph_type, typename T>
       
    62     class dijkstra{
       
    63       typedef typename graph_traits<graph_type>::node_iterator node_iterator;
       
    64       typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
       
    65       typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
       
    66       typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
       
    67       typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
       
    68       
       
    69       
       
    70       graph_type& G;
       
    71       node_iterator s;
       
    72       node_property_vector<graph_type, edge_iterator> predecessor;
       
    73       node_property_vector<graph_type, T> distance;
       
    74       edge_property_vector<graph_type, T> length;
       
    75       node_property_vector<graph_type, bool> reached;
       
    76           
       
    77   public :
       
    78 
       
    79     /*
       
    80       The distance of all the nodes is 0.
       
    81     */
       
    82     dijkstra(graph_type& _G, node_iterator _s, edge_property_vector<graph_type, T>& _length) : 
       
    83       G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { }
       
    84     
       
    85 
       
    86       
       
    87       /*By Misi.*/
       
    88       struct node_dist_comp
       
    89       {
       
    90 	node_property_vector<graph_type, T> &d;
       
    91 	node_dist_comp(node_property_vector<graph_type, T> &_d) : d(_d) {} 
       
    92 	
       
    93 	bool operator()(const node_iterator& u, const node_iterator& v) const 
       
    94 	{ return d.get(u) < d.get(v); }
       
    95       };
       
    96 
       
    97 
       
    98       
       
    99       void run() {
       
   100 	
       
   101 	node_property_vector<graph_type, bool> scanned(G, false);
       
   102 	std::priority_queue<node_iterator, vector<node_iterator>, node_dist_comp> 
       
   103 	  heap(( node_dist_comp(distance) ));
       
   104       
       
   105 	heap.push(s);
       
   106 	reached.put(s, true);
       
   107 
       
   108 	while (!heap.empty()) {
       
   109 
       
   110 	  node_iterator v=heap.top();	
       
   111 	  heap.pop();
       
   112 
       
   113 
       
   114 	  if (!scanned.get(v)) {
       
   115 	
       
   116 	    for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) {
       
   117 	      node_iterator w=G.head(e);
       
   118 
       
   119 	      if (!scanned.get(w)) {
       
   120 		if (!reached.get(w)) {
       
   121 		  reached.put(w,true);
       
   122 		  distance.put(w, distance.get(v)-length.get(e));
       
   123 		  predecessor.put(w,e);
       
   124 		} else if (distance.get(v)-length.get(e)>distance.get(w)) {
       
   125 		  distance.put(w, distance.get(v)-length.get(e));
       
   126 		  predecessor.put(w,e);
       
   127 		}
       
   128 		
       
   129 		heap.push(w);
       
   130 	      
       
   131 	      } 
       
   132 
       
   133 	    } 
       
   134 	    scanned.put(v,true);
       
   135 	    
       
   136 	  } // if (!scanned.get(v))
       
   137 	  
       
   138 	  
       
   139 	  
       
   140 	} // while (!heap.empty())
       
   141 
       
   142 	
       
   143       } //void run()
       
   144       
       
   145       
       
   146       
       
   147 
       
   148 
       
   149       /*
       
   150        *Returns the distance of the node v.
       
   151        *It is 0 for the root and for the nodes not
       
   152        *reachable form the root.
       
   153        */      
       
   154       T dist(node_iterator v) {
       
   155 	return -distance.get(v);
       
   156       }
       
   157 
       
   158 
       
   159 
       
   160       /*
       
   161        *  Returns the last edge of a shortest s-v path. 
       
   162        *  Returns an invalid iterator if v=root or v is not
       
   163        *  reachable from the root.
       
   164        */      
       
   165       edge_iterator pred(node_iterator v) {
       
   166 	if (v!=s) { return predecessor.get(v);}
       
   167 	else {return edge_iterator();}
       
   168       }
       
   169      
       
   170 
       
   171       
       
   172       bool reach(node_iterator v) {
       
   173 	return reached.get(v);
       
   174       }
       
   175 
       
   176 
       
   177 
       
   178 
       
   179 
       
   180 
       
   181 
       
   182 
       
   183 
       
   184     };// class dijkstra
       
   185 
       
   186 
       
   187 
       
   188   } // namespace marci
       
   189 }
       
   190 #endif //DIJKSTRA_HH
       
   191 
       
   192