src/work/jacint/preflow_push_max_flow.hh
changeset 58 f71840c04b2a
child 105 a3c73e9b9b2e
equal deleted inserted replaced
-1:000000000000 0:05a424c927e0
       
     1 /*
       
     2 preflow_push_max_flow_hh
       
     3 by jacint. 
       
     4 Runs a preflow push algorithm with the modification, 
       
     5 that we do not push on nodes with level at least n. 
       
     6 Moreover, if a level gets empty, we put all nodes above that
       
     7 level to level n. Hence, in the end, we arrive at a maximum preflow 
       
     8 with value of a max flow value. An empty level gives a minimum cut.
       
     9 
       
    10 Member functions:
       
    11 
       
    12 void run() : runs the algorithm
       
    13 
       
    14   The following functions should be used after run() was already run.
       
    15 
       
    16 T maxflow() : returns the value of a maximum flow
       
    17 
       
    18 node_property_vector<graph_type, bool> mincut(): returns a 
       
    19      characteristic vector of a minimum cut.
       
    20 */
       
    21 
       
    22 #ifndef PREFLOW_PUSH_MAX_FLOW_HH
       
    23 #define PREFLOW_PUSH_MAX_FLOW_HH
       
    24 
       
    25 #include <algorithm>
       
    26 #include <vector>
       
    27 #include <stack>
       
    28 
       
    29 #include <marci_list_graph.hh>
       
    30 #include <marci_graph_traits.hh>
       
    31 #include <marci_property_vector.hh>
       
    32 #include <reverse_bfs.hh>
       
    33 
       
    34 
       
    35 namespace marci {
       
    36 
       
    37   template <typename graph_type, typename T>
       
    38   class preflow_push_max_flow {
       
    39     
       
    40     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
       
    41     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
       
    42     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
       
    43     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
       
    44     
       
    45     graph_type& G;
       
    46     node_iterator s;
       
    47     node_iterator t;
       
    48     edge_property_vector<graph_type, T>& capacity; 
       
    49     T value;
       
    50     node_property_vector<graph_type, bool> mincutvector;    
       
    51 
       
    52 
       
    53      
       
    54   public:
       
    55         
       
    56     preflow_push_max_flow(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { }
       
    57 
       
    58 
       
    59     /*
       
    60       The run() function runs a modified version of the highest label preflow-push, which only 
       
    61       finds a maximum preflow, hence giving the value of a maximum flow.
       
    62     */
       
    63     void run() {
       
    64  
       
    65       edge_property_vector<graph_type, T> flow(G, 0);         //the flow value, 0 everywhere  
       
    66       node_property_vector<graph_type, int> level(G);         //level of node
       
    67       node_property_vector<graph_type, T> excess(G);          //excess of node
       
    68             
       
    69       int n=number_of(G.first_node());                        //number of nodes 
       
    70       int b=n-2; 
       
    71       /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
       
    72       
       
    73       std::vector<int> numb(n);                                //The number of nodes on level i < n.
       
    74 
       
    75       std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
       
    76 
       
    77 
       
    78 
       
    79       /*Reverse_bfs from t, to find the starting level.*/
       
    80 
       
    81       reverse_bfs<list_graph> bfs(G, t);
       
    82       bfs.run();
       
    83       for(each_node_iterator v=G.first_node(); v.valid(); ++v) 
       
    84 	{
       
    85 	  int dist=bfs.dist(v);
       
    86 	  level.put(v, dist); 
       
    87 	  ++numb[dist];
       
    88 	}
       
    89 
       
    90       /*The level of s is fixed to n*/ 
       
    91       level.put(s,n);
       
    92 
       
    93 
       
    94       /* Starting flow. It is everywhere 0 at the moment. */
       
    95      
       
    96       for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
       
    97 	{
       
    98 	  node_iterator w=G.head(i);
       
    99 	  flow.put(i, capacity.get(i)); 
       
   100 	  stack[bfs.dist(w)].push(w); 
       
   101 	  excess.put(w, capacity.get(i));
       
   102 	}
       
   103 
       
   104 
       
   105       /* 
       
   106 	 End of preprocessing 
       
   107       */
       
   108 
       
   109 
       
   110 
       
   111 
       
   112       /*
       
   113 	Push/relabel on the highest level active nodes.
       
   114       */
       
   115 	
       
   116       /*While there exists an active node.*/
       
   117       while (b) { 
       
   118 
       
   119 	/*We decrease the bound if there is no active node of level b.*/
       
   120 	if (stack[b].empty()) {
       
   121 	  --b;
       
   122 	} else {
       
   123 
       
   124 	  node_iterator w=stack[b].top();    //w is the highest label active node.
       
   125 	  stack[b].pop();                    //We delete w from the stack.
       
   126 	
       
   127 	  int newlevel=2*n-2;                //In newlevel we maintain the next level of w.
       
   128 	
       
   129 	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
       
   130 	    node_iterator v=G.head(e);
       
   131 	    /*e is the edge wv.*/
       
   132 
       
   133 	    if (flow.get(e)<capacity.get(e)) {              
       
   134 	      /*e is an edge of the residual graph */
       
   135 
       
   136 	      if(level.get(w)==level.get(v)+1) {      
       
   137 		/*Push is allowed now*/
       
   138 
       
   139 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
       
   140 		  /*A nonsaturating push.*/
       
   141 		  
       
   142 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   143 		  /*v becomes active.*/
       
   144 		  
       
   145 		  flow.put(e, flow.get(e)+excess.get(w));
       
   146 		  excess.put(v, excess.get(v)+excess.get(w));
       
   147 		  excess.put(w,0);
       
   148 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
       
   149 		  break; 
       
   150 		} else { 
       
   151 		  /*A saturating push.*/
       
   152 
       
   153 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   154 		  /*v becomes active.*/
       
   155 
       
   156 		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
       
   157 		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
       
   158 		  flow.put(e, capacity.get(e));
       
   159 		  //std::cout << w <<" " << v <<" elore elen sat pump "   << std::endl;
       
   160 		  if (excess.get(w)==0) break; 
       
   161 		  /*If w is not active any more, then we go on to the next node.*/
       
   162 		  
       
   163 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
       
   164 	      } // if (level.get(w)==level.get(v)+1)
       
   165 	    
       
   166 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
       
   167 	    
       
   168 	    } //if (flow.get(e)<capacity.get(e))
       
   169 	 
       
   170 	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
       
   171 	  
       
   172 
       
   173 
       
   174 	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
       
   175 	    node_iterator v=G.tail(e);
       
   176 	    /*e is the edge vw.*/
       
   177 
       
   178 	    if (excess.get(w)==0) break;
       
   179 	    /*It may happen, that w became inactive in the first 'for' cycle.*/		
       
   180   
       
   181 	    if(flow.get(e)>0) {             
       
   182 	      /*e is an edge of the residual graph */
       
   183 
       
   184 	      if(level.get(w)==level.get(v)+1) {  
       
   185 		/*Push is allowed now*/
       
   186 		
       
   187 		if (flow.get(e) > excess.get(w)) { 
       
   188 		  /*A nonsaturating push.*/
       
   189 		  
       
   190 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   191 		  /*v becomes active.*/
       
   192 
       
   193 		  flow.put(e, flow.get(e)-excess.get(w));
       
   194 		  excess.put(v, excess.get(v)+excess.get(w));
       
   195 		  excess.put(w,0);
       
   196 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
       
   197 		  break; 
       
   198 		} else {                                               
       
   199 		  /*A saturating push.*/
       
   200 		  
       
   201 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   202 		  /*v becomes active.*/
       
   203 		  
       
   204 		  flow.put(e,0);
       
   205 		  excess.put(v, excess.get(v)+flow.get(e));
       
   206 		  excess.put(w, excess.get(w)-flow.get(e));
       
   207 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
       
   208 		  if (excess.get(w)==0) { break;}
       
   209 		} //if (flow.get(e) > excess.get(v)) 
       
   210 	      } //if(level.get(w)==level.get(v)+1)
       
   211 	      
       
   212 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
       
   213 	      //std::cout << "Leveldecrease of node " << w << " to " << newlevel << std::endl; 
       
   214 
       
   215 	    } //if (flow.get(e)>0)
       
   216 
       
   217 	  } //for in-edge
       
   218 
       
   219 
       
   220 
       
   221 
       
   222 	  /*
       
   223 	    Relabel
       
   224 	  */
       
   225 	  if (excess.get(w)>0) {
       
   226 	    /*Now newlevel <= n*/
       
   227 
       
   228 	    int l=level.get(w);	        //l is the old level of w.
       
   229 	    --numb[l];
       
   230 	   
       
   231 	    if (newlevel == n) {
       
   232 	      level.put(w,n);
       
   233 	      
       
   234 	    } else {
       
   235 	      
       
   236 	      if (numb[l]) {
       
   237 		/*If the level of w remains nonempty.*/
       
   238 		
       
   239 		level.put(w,++newlevel);
       
   240 		++numb[newlevel];
       
   241 		stack[newlevel].push(w);
       
   242 		b=newlevel;
       
   243 	      } else { 
       
   244 		/*If the level of w gets empty.*/
       
   245 	      
       
   246 		for (each_node_iterator v=G.first_node() ; v.valid() ; ++v) {
       
   247 		  if (level.get(v) >= l ) { 
       
   248 		    level.put(v,n);  
       
   249 		  }
       
   250 		}
       
   251 		
       
   252 		for (int i=l+1 ; i!=n ; ++i) numb[i]=0; 
       
   253 	      } //if (numb[l])
       
   254 	
       
   255 	    } // if (newlevel = n)
       
   256 	 
       
   257 	  } // if (excess.get(w)>0)
       
   258 
       
   259 
       
   260 	} //else
       
   261        
       
   262       } //while(b)
       
   263 
       
   264       value=excess.get(t);
       
   265       /*Max flow value.*/
       
   266       
       
   267 
       
   268 
       
   269       /*
       
   270 	We find an empty level, e. The nodes above this level give 
       
   271 	a minimum cut.
       
   272       */
       
   273       
       
   274       int e=1;
       
   275       
       
   276       while(e) {
       
   277 	if(numb[e]) ++e;
       
   278 	else break;
       
   279       } 
       
   280       for (each_node_iterator v=G.first_node(); v.valid(); ++v) {
       
   281 	if (level.get(v) > e) mincutvector.put(v, true);
       
   282       }
       
   283       
       
   284 
       
   285     } // void run()
       
   286 
       
   287 
       
   288 
       
   289     /*
       
   290       Returns the maximum value of a flow.
       
   291      */
       
   292 
       
   293     T maxflow() {
       
   294       return value;
       
   295     }
       
   296 
       
   297 
       
   298 
       
   299     /*
       
   300       Returns a minimum cut.
       
   301     */
       
   302     
       
   303     node_property_vector<graph_type, bool> mincut() {
       
   304       return mincutvector;
       
   305     }
       
   306     
       
   307 
       
   308   };
       
   309 }//namespace marci
       
   310 #endif 
       
   311 
       
   312 
       
   313 
       
   314 
       
   315