src/work/marci_max_flow.hh
changeset 280 19f3943521ab
parent 279 be43902fadb7
child 281 3fefabfd00b7
     1.1 --- a/src/work/marci_max_flow.hh	Sat Apr 03 14:22:33 2004 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,183 +0,0 @@
     1.4 -#ifndef MARCI_MAX_FLOW_HH
     1.5 -#define MARCI_MAX_FLOW_HH
     1.6 -
     1.7 -#include <algorithm>
     1.8 -
     1.9 -#include <marci_property_vector.hh>
    1.10 -#include <marci_bfs.hh>
    1.11 -
    1.12 -namespace hugo {
    1.13 -
    1.14 -  template<typename graph_type, typename T>
    1.15 -  class res_graph_type { 
    1.16 -    typedef typename graph_type::node_iterator node_iterator;
    1.17 -    typedef typename graph_type::each_node_iterator each_node_iterator;
    1.18 -    typedef typename graph_type::sym_edge_iterator old_sym_edge_iterator;
    1.19 -    graph_type& G;
    1.20 -    edge_property_vector<graph_type, T>& flow;
    1.21 -    edge_property_vector<graph_type, T>& capacity;
    1.22 -  public:
    1.23 -    res_graph_type(graph_type& _G, edge_property_vector<graph_type, T>& _flow, edge_property_vector<graph_type, T>& _capacity) : G(_G), flow(_flow), capacity(_capacity) { }
    1.24 -
    1.25 -    class edge_iterator {
    1.26 -      friend class res_graph_type<graph_type, T>;
    1.27 -    protected:
    1.28 -      res_graph_type<graph_type, T>* resG;
    1.29 -      old_sym_edge_iterator sym;
    1.30 -    public:
    1.31 -      edge_iterator() { }
    1.32 -      //bool is_free() {  
    1.33 -      //if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    1.34 -      //  return (resG->flow.get(sym)<resG->capacity.get(sym)); 
    1.35 -      //} else { 
    1.36 -      //  return (resG->flow.get(sym)>0); 
    1.37 -      //}
    1.38 -      //}
    1.39 -      T free() { 
    1.40 -	if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    1.41 -	  return (resG->capacity.get(sym)-resG->flow.get(sym)); 
    1.42 -	} else { 
    1.43 -	  return (resG->flow.get(sym)); 
    1.44 -	}
    1.45 -      }
    1.46 -      bool valid() { return sym.valid(); }
    1.47 -      void make_invalid() { sym.make_invalid(); }
    1.48 -      void augment(T a) {
    1.49 -	if (resG->G.a_node(sym)==resG->G.tail(sym)) { 
    1.50 -	  resG->flow.put(sym, resG->flow.get(sym)+a);
    1.51 -	} else { 
    1.52 -	  resG->flow.put(sym, resG->flow.get(sym)-a);
    1.53 -	}
    1.54 -      }
    1.55 -    };
    1.56 -
    1.57 -    class out_edge_iterator : public edge_iterator {
    1.58 -    public:
    1.59 -      out_edge_iterator() { }
    1.60 -      out_edge_iterator(res_graph_type<graph_type, T>& _resG, const node_iterator& v) { 
    1.61 -      	resG=&_resG;
    1.62 -	sym=resG->G.first_sym_edge(v);
    1.63 -	while( sym.valid() && !(free()>0) ) { ++sym; }
    1.64 -      }
    1.65 -      out_edge_iterator& operator++() { 
    1.66 -	++sym; 
    1.67 -	while( sym.valid() && !(free()>0) ) { ++sym; }
    1.68 -	return *this; 
    1.69 -      }
    1.70 -    };
    1.71 -
    1.72 -    out_edge_iterator first_out_edge(const node_iterator& v) {
    1.73 -      return out_edge_iterator(*this, v);
    1.74 -    }
    1.75 -
    1.76 -    each_node_iterator first_node() {
    1.77 -      return G.first_node();
    1.78 -    }
    1.79 -
    1.80 -    node_iterator tail(const edge_iterator& e) { return G.a_node(e.sym); }
    1.81 -    node_iterator head(const edge_iterator& e) { return G.b_node(e.sym); }
    1.82 -
    1.83 -    int id(const node_iterator& v) { return G.id(v); }
    1.84 -
    1.85 -    //node_iterator invalid_node() { return G.invalid_node(); }
    1.86 -    //res_edge_it invalid_edge() { res_edge_it n; n.sym=G.invalid_sym_edge(); return n; } 
    1.87 -  };
    1.88 -
    1.89 -  template <typename graph_type, typename T>
    1.90 -  struct max_flow_type {
    1.91 -    typedef typename graph_type::node_iterator node_iterator;
    1.92 -    typedef typename graph_type::edge_iterator edge_iterator;
    1.93 -    typedef typename graph_type::each_node_iterator each_node_iterator;
    1.94 -    typedef typename graph_type::out_edge_iterator out_edge_iterator;
    1.95 -    typedef typename graph_type::in_edge_iterator in_edge_iterator;
    1.96 -    graph_type& G;
    1.97 -    node_iterator s;
    1.98 -    node_iterator t;
    1.99 -    edge_property_vector<graph_type, T> flow;
   1.100 -    edge_property_vector<graph_type, T>& capacity;
   1.101 -
   1.102 -    max_flow_type(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G), capacity(_capacity) { 
   1.103 -      for(each_node_iterator i=G.first_node(); i.valid(); ++i) 
   1.104 -	for(out_edge_iterator j=G.first_out_edge(i); j.valid(); ++j) 
   1.105 -	  flow.put(j, 0);
   1.106 -    }
   1.107 -    void run() {
   1.108 -      typedef res_graph_type<graph_type, T> aug_graph_type;
   1.109 -      aug_graph_type res_graph(G, flow, capacity);
   1.110 -
   1.111 -      bool augment;
   1.112 -      do {
   1.113 -	augment=false;
   1.114 -
   1.115 -	typedef std::queue<aug_graph_type::out_edge_iterator> bfs_queue_type;
   1.116 -	bfs_queue_type bfs_queue;
   1.117 -	bfs_queue.push(res_graph.first_out_edge(s));
   1.118 -
   1.119 -	typedef node_property_vector<aug_graph_type, bool> reached_type;
   1.120 -	reached_type reached(res_graph, false);
   1.121 -	reached.put(s, true); 
   1.122 -	
   1.123 -	bfs_iterator1< aug_graph_type, reached_type > 
   1.124 -	res_bfs(res_graph, bfs_queue, reached);
   1.125 -
   1.126 -	typedef node_property_vector<aug_graph_type, aug_graph_type::edge_iterator> pred_type;
   1.127 -	pred_type pred(res_graph);
   1.128 -	aug_graph_type::edge_iterator a; 
   1.129 -	a.make_invalid();
   1.130 -	pred.put(s, a);
   1.131 -
   1.132 -	typedef node_property_vector<aug_graph_type, int> free_type;
   1.133 -	free_type free(res_graph);
   1.134 -	
   1.135 -	//searching for augmenting path
   1.136 -	while ( res_bfs.valid() ) { 
   1.137 -	  //std::cout<<"KULSO ciklus itt jar: "<<G.id(res_graph.tail(res_bfs))<<"->"<<G.id(res_graph.head(res_bfs))<<std::endl;
   1.138 -	  if (res_bfs.newly_reached()) {
   1.139 -	    aug_graph_type::edge_iterator e;
   1.140 -	    e=res_bfs;
   1.141 -	    node_iterator v=res_graph.tail(e);
   1.142 -	    node_iterator w=res_graph.head(e);
   1.143 -	    //std::cout<<G.id(v)<<"->"<<G.id(w)<<", "<<G.id(w)<<" is newly reached";
   1.144 -	    pred.put(w, e);
   1.145 -	    if (pred.get(v).valid()) {
   1.146 -	      free.put(w, std::min(free.get(v), e.free()));
   1.147 -	      //std::cout <<" nem elso csucs: ";
   1.148 -	      //std::cout <<"szabad kap eddig: "<< free.get(w) << " ";
   1.149 -	    } else {
   1.150 -	      free.put(w, e.free()); 
   1.151 -	      //std::cout <<" elso csucs: ";
   1.152 -	      //std::cout <<"szabad kap eddig: "<< free.get(w) << " ";
   1.153 -	    }
   1.154 -	    //std::cout<<std::endl;
   1.155 -	  }
   1.156 -	
   1.157 -	  if (res_graph.head(res_bfs)==t) break;
   1.158 -	  ++res_bfs;
   1.159 -	}
   1.160 -	if (reached.get(t)) {
   1.161 -	  augment=true;
   1.162 -	  node_iterator n=t;
   1.163 -	  T augment_value=free.get(t);
   1.164 -	  std::cout<<"augmentation: ";
   1.165 -	  while (pred.get(n).valid()) { 
   1.166 -	    aug_graph_type::edge_iterator e=pred.get(n);
   1.167 -	    e.augment(augment_value); 
   1.168 -	    std::cout<<"("<<res_graph.tail(e)<< "->"<<res_graph.head(e)<<") ";
   1.169 -	    n=res_graph.tail(e);
   1.170 -	  }
   1.171 -	  std::cout<<std::endl;
   1.172 -	}
   1.173 -
   1.174 -	std::cout << "actual flow: "<< std::endl;
   1.175 -	for(typename graph_type::each_edge_iterator e=G.first_edge(); e.valid(); ++e) { 
   1.176 -	  std::cout<<"("<<G.tail(e)<< "-"<<flow.get(e)<<"->"<<G.head(e)<<") ";
   1.177 -	}
   1.178 -	std::cout<<std::endl;
   1.179 -
   1.180 -      } while (augment);
   1.181 -    }
   1.182 -  };
   1.183 -
   1.184 -} // namespace hugo
   1.185 -
   1.186 -#endif //MARCI_MAX_FLOW_HH