lemon/ssp_min_cost_flow.h
changeset 2276 1a8a66b6c6ce
child 2350 eb371753e814
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/ssp_min_cost_flow.h	Mon Oct 30 17:22:14 2006 +0000
     1.3 @@ -0,0 +1,260 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2006
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_MIN_COST_FLOW_H
    1.23 +#define LEMON_MIN_COST_FLOW_H
    1.24 +
    1.25 +///\ingroup flowalgs 
    1.26 +///
    1.27 +///\file \brief An algorithm for finding a flow of value \c k (for
    1.28 +///small values of \c k) having minimal total cost
    1.29 +
    1.30 +
    1.31 +#include <lemon/dijkstra.h>
    1.32 +#include <lemon/graph_adaptor.h>
    1.33 +#include <lemon/maps.h>
    1.34 +#include <vector>
    1.35 +
    1.36 +namespace lemon {
    1.37 +
    1.38 +  /// \addtogroup flowalgs
    1.39 +  /// @{
    1.40 +
    1.41 +  /// \brief Implementation of an algorithm for finding a flow of
    1.42 +  /// value \c k (for small values of \c k) having minimal total cost
    1.43 +  /// between two nodes
    1.44 +  /// 
    1.45 +  ///
    1.46 +  /// The \ref lemon::SspMinCostFlow "Successive Shortest Path Minimum
    1.47 +  /// Cost Flow" implements an algorithm for finding a flow of value
    1.48 +  /// \c k having minimal total cost from a given source node to a
    1.49 +  /// given target node in a directed graph with a cost function on
    1.50 +  /// the edges. To this end, the edge-capacities and edge-costs have
    1.51 +  /// to be nonnegative.  The edge-capacities should be integers, but
    1.52 +  /// the edge-costs can be integers, reals or of other comparable
    1.53 +  /// numeric type.  This algorithm is intended to be used only for
    1.54 +  /// small values of \c k, since it is only polynomial in k, not in
    1.55 +  /// the length of k (which is log k): in order to find the minimum
    1.56 +  /// cost flow of value \c k it finds the minimum cost flow of value
    1.57 +  /// \c i for every \c i between 0 and \c k.
    1.58 +  ///
    1.59 +  ///\param Graph The directed graph type the algorithm runs on.
    1.60 +  ///\param LengthMap The type of the length map.
    1.61 +  ///\param CapacityMap The capacity map type.
    1.62 +  ///
    1.63 +  ///\author Attila Bernath
    1.64 +  template <typename Graph, typename LengthMap, typename CapacityMap>
    1.65 +  class SspMinCostFlow {
    1.66 +
    1.67 +    typedef typename LengthMap::Value Length;
    1.68 +
    1.69 +    //Warning: this should be integer type
    1.70 +    typedef typename CapacityMap::Value Capacity;
    1.71 +    
    1.72 +    typedef typename Graph::Node Node;
    1.73 +    typedef typename Graph::NodeIt NodeIt;
    1.74 +    typedef typename Graph::Edge Edge;
    1.75 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.76 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.77 +
    1.78 +    typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
    1.79 +    typedef typename ResGW::Edge ResGraphEdge;
    1.80 +
    1.81 +  protected:
    1.82 +
    1.83 +    const Graph& g;
    1.84 +    const LengthMap& length;
    1.85 +    const CapacityMap& capacity;
    1.86 +
    1.87 +    EdgeIntMap flow; 
    1.88 +    typedef typename Graph::template NodeMap<Length> PotentialMap;
    1.89 +    PotentialMap potential;
    1.90 +
    1.91 +    Node s;
    1.92 +    Node t;
    1.93 +    
    1.94 +    Length total_length;
    1.95 +
    1.96 +    class ModLengthMap {   
    1.97 +      typedef typename Graph::template NodeMap<Length> NodeMap;
    1.98 +      const ResGW& g;
    1.99 +      const LengthMap &length;
   1.100 +      const NodeMap &pot;
   1.101 +    public :
   1.102 +      typedef typename LengthMap::Key Key;
   1.103 +      typedef typename LengthMap::Value Value;
   1.104 +
   1.105 +      ModLengthMap(const ResGW& _g, 
   1.106 +		   const LengthMap &_length, const NodeMap &_pot) : 
   1.107 +	g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
   1.108 +	
   1.109 +      Value operator[](typename ResGW::Edge e) const {     
   1.110 +	if (g.forward(e))
   1.111 +	  return  length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
   1.112 +	else
   1.113 +	  return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
   1.114 +      }     
   1.115 +	
   1.116 +    }; //ModLengthMap
   1.117 +
   1.118 +    ResGW res_graph;
   1.119 +    ModLengthMap mod_length;
   1.120 +    Dijkstra<ResGW, ModLengthMap> dijkstra;
   1.121 +
   1.122 +  public :
   1.123 +
   1.124 +    /// \brief The constructor of the class.
   1.125 +    ///
   1.126 +    /// \param _g The directed graph the algorithm runs on. 
   1.127 +    /// \param _length The length (cost) of the edges. 
   1.128 +    /// \param _cap The capacity of the edges. 
   1.129 +    /// \param _s Source node.
   1.130 +    /// \param _t Target node.
   1.131 +    SspMinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap, 
   1.132 +                   Node _s, Node _t) : 
   1.133 +      g(_g), length(_length), capacity(_cap), flow(_g), potential(_g), 
   1.134 +      s(_s), t(_t), 
   1.135 +      res_graph(g, capacity, flow), 
   1.136 +      mod_length(res_graph, length, potential),
   1.137 +      dijkstra(res_graph, mod_length) { 
   1.138 +      reset();
   1.139 +    }
   1.140 +    
   1.141 +    /// \brief Tries to augment the flow between s and t by 1. The
   1.142 +    /// return value shows if the augmentation is successful.
   1.143 +    bool augment() {
   1.144 +      dijkstra.run(s);
   1.145 +      if (!dijkstra.reached(t)) {
   1.146 +
   1.147 +	//Unsuccessful augmentation.
   1.148 +	return false;
   1.149 +      } else {
   1.150 +
   1.151 +	//We have to change the potential
   1.152 +	for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
   1.153 +	  potential.set(n, potential[n]+dijkstra.distMap()[n]);
   1.154 +	
   1.155 +	//Augmenting on the shortest path
   1.156 +	Node n=t;
   1.157 +	ResGraphEdge e;
   1.158 +	while (n!=s){
   1.159 +	  e = dijkstra.predEdge(n);
   1.160 +	  n = dijkstra.predNode(n);
   1.161 +	  res_graph.augment(e,1);
   1.162 +	  //Let's update the total length
   1.163 +	  if (res_graph.forward(e))
   1.164 +	    total_length += length[e];
   1.165 +	  else 
   1.166 +	    total_length -= length[e];	    
   1.167 +	}
   1.168 +
   1.169 +	return true;
   1.170 +      }
   1.171 +    }
   1.172 +    
   1.173 +    /// \brief Runs the algorithm.
   1.174 +    ///
   1.175 +    /// Runs the algorithm.
   1.176 +    /// Returns k if there is a flow of value at least k from s to t.
   1.177 +    /// Otherwise it returns the maximum value of a flow from s to t.
   1.178 +    ///
   1.179 +    /// \param k The value of the flow we are looking for.
   1.180 +    ///
   1.181 +    /// \todo May be it does make sense to be able to start with a
   1.182 +    /// nonzero feasible primal-dual solution pair as well.
   1.183 +    ///
   1.184 +    /// \todo If the actual flow value is bigger than k, then
   1.185 +    /// everything is cleared and the algorithm starts from zero
   1.186 +    /// flow. Is it a good approach?
   1.187 +    int run(int k) {
   1.188 +      if (flowValue()>k) reset();
   1.189 +      while (flowValue()<k && augment()) { }
   1.190 +      return flowValue();
   1.191 +    }
   1.192 +
   1.193 +    /// \brief The class is reset to zero flow and potential. The
   1.194 +    /// class is reset to zero flow and potential.
   1.195 +    void reset() {
   1.196 +      total_length=0;
   1.197 +      for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
   1.198 +      for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);  
   1.199 +    }
   1.200 +
   1.201 +    /// \brief Returns the value of the actual flow. 
   1.202 +    int flowValue() const {
   1.203 +      int i=0;
   1.204 +      for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
   1.205 +      for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
   1.206 +      return i;
   1.207 +    }
   1.208 +
   1.209 +    /// \brief Total cost of the found flow.
   1.210 +    ///
   1.211 +    /// This function gives back the total cost of the found flow.
   1.212 +    Length totalLength(){
   1.213 +      return total_length;
   1.214 +    }
   1.215 +
   1.216 +    /// \brief Returns a const reference to the EdgeMap \c flow. 
   1.217 +    ///
   1.218 +    /// Returns a const reference to the EdgeMap \c flow. 
   1.219 +    const EdgeIntMap &getFlow() const { return flow;}
   1.220 +
   1.221 +    /// \brief Returns a const reference to the NodeMap \c potential
   1.222 +    /// (the dual solution).
   1.223 +    ///
   1.224 +    /// Returns a const reference to the NodeMap \c potential (the
   1.225 +    /// dual solution).
   1.226 +    const PotentialMap &getPotential() const { return potential;}
   1.227 +
   1.228 +    /// \brief Checking the complementary slackness optimality criteria.
   1.229 +    ///
   1.230 +    /// This function checks, whether the given flow and potential 
   1.231 +    /// satisfy the complementary slackness conditions (i.e. these are optimal).
   1.232 +    /// This function only checks optimality, doesn't bother with feasibility.
   1.233 +    /// For testing purpose.
   1.234 +    bool checkComplementarySlackness(){
   1.235 +      Length mod_pot;
   1.236 +      Length fl_e;
   1.237 +        for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
   1.238 +	//C^{\Pi}_{i,j}
   1.239 +	mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
   1.240 +	fl_e = flow[e];
   1.241 +	if (0<fl_e && fl_e<capacity[e]) {
   1.242 +	  /// \todo better comparison is needed for real types, moreover, 
   1.243 +	  /// this comparison here is superfluous.
   1.244 +	  if (mod_pot != 0)
   1.245 +	    return false;
   1.246 +	} 
   1.247 +	else {
   1.248 +	  if (mod_pot > 0 && fl_e != 0)
   1.249 +	    return false;
   1.250 +	  if (mod_pot < 0 && fl_e != capacity[e])
   1.251 +	    return false;
   1.252 +	}
   1.253 +      }
   1.254 +      return true;
   1.255 +    }
   1.256 +    
   1.257 +  }; //class SspMinCostFlow
   1.258 +
   1.259 +  ///@}
   1.260 +
   1.261 +} //namespace lemon
   1.262 +
   1.263 +#endif //LEMON_MIN_COST_FLOW_H