lemon/concept/bpugraph.h
changeset 2260 4274224f8a7d
parent 2259 da142c310d02
child 2261 c52b572c294f
     1.1 --- a/lemon/concept/bpugraph.h	Tue Oct 24 16:49:41 2006 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,1020 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library
     1.7 - *
     1.8 - * Copyright (C) 2003-2006
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -/// \ingroup graph_concepts
    1.23 -/// \file
    1.24 -/// \brief Undirected bipartite graphs and components of.
    1.25 -
    1.26 -
    1.27 -#ifndef LEMON_CONCEPT_BPUGRAPH_H
    1.28 -#define LEMON_CONCEPT_BPUGRAPH_H
    1.29 -
    1.30 -#include <lemon/concept/graph_components.h>
    1.31 -
    1.32 -#include <lemon/concept/graph.h>
    1.33 -#include <lemon/concept/ugraph.h>
    1.34 -
    1.35 -#include <lemon/bits/utility.h>
    1.36 -
    1.37 -namespace lemon {
    1.38 -  namespace concept {
    1.39 -
    1.40 -    /// \addtogroup graph_concepts
    1.41 -    /// @{
    1.42 -
    1.43 -
    1.44 -    /// \brief Class describing the concept of Bipartite Undirected Graphs.
    1.45 -    ///
    1.46 -    /// This class describes the common interface of all 
    1.47 -    /// Undirected Bipartite Graphs.
    1.48 -    ///
    1.49 -    /// As all concept describing classes it provides only interface
    1.50 -    /// without any sensible implementation. So any algorithm for
    1.51 -    /// bipartite undirected graph should compile with this class, but it 
    1.52 -    /// will not run properly, of course.
    1.53 -    ///
    1.54 -    /// In LEMON bipartite undirected graphs also fulfill the concept of 
    1.55 -    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    1.56 -    ///
    1.57 -    /// You can assume that all undirected bipartite graph can be handled
    1.58 -    /// as an undirected graph and consequently as a static graph.
    1.59 -    ///
    1.60 -    /// The bipartite graph stores two types of nodes which are named
    1.61 -    /// ANode and BNode. The graph type contains two types ANode and
    1.62 -    /// BNode which are inherited from Node type. Moreover they have
    1.63 -    /// constructor which converts Node to either ANode or BNode when
    1.64 -    /// it is possible. Therefor everywhere the Node type can be used
    1.65 -    /// instead of ANode and BNode. So the usage of the ANode and
    1.66 -    /// BNode is not suggested.
    1.67 -    ///
    1.68 -    /// The iteration on the partition can be done with the ANodeIt and 
    1.69 -    /// BNodeIt classes. The node map can be used to map values to the nodes
    1.70 -    /// and similarly we can use to map values for just the ANodes and
    1.71 -    /// BNodes the ANodeMap and BNodeMap template classes.
    1.72 -
    1.73 -    class BpUGraph {
    1.74 -    public:
    1.75 -      /// \brief The undirected graph should be tagged by the
    1.76 -      /// UndirectedTag.
    1.77 -      ///
    1.78 -      /// The undirected graph should be tagged by the UndirectedTag. This
    1.79 -      /// tag helps the enable_if technics to make compile time 
    1.80 -      /// specializations for undirected graphs.  
    1.81 -      typedef True UndirectedTag;
    1.82 -
    1.83 -      /// \brief The base type of node iterators, 
    1.84 -      /// or in other words, the trivial node iterator.
    1.85 -      ///
    1.86 -      /// This is the base type of each node iterator,
    1.87 -      /// thus each kind of node iterator converts to this.
    1.88 -      /// More precisely each kind of node iterator should be inherited 
    1.89 -      /// from the trivial node iterator. The Node class represents
    1.90 -      /// both of two types of nodes. 
    1.91 -      class Node {
    1.92 -      public:
    1.93 -        /// Default constructor
    1.94 -
    1.95 -        /// @warning The default constructor sets the iterator
    1.96 -        /// to an undefined value.
    1.97 -        Node() { }
    1.98 -        /// Copy constructor.
    1.99 -
   1.100 -        /// Copy constructor.
   1.101 -        ///
   1.102 -        Node(const Node&) { }
   1.103 -
   1.104 -        /// Invalid constructor \& conversion.
   1.105 -
   1.106 -        /// This constructor initializes the iterator to be invalid.
   1.107 -        /// \sa Invalid for more details.
   1.108 -        Node(Invalid) { }
   1.109 -        /// Equality operator
   1.110 -
   1.111 -        /// Two iterators are equal if and only if they point to the
   1.112 -        /// same object or both are invalid.
   1.113 -        bool operator==(Node) const { return true; }
   1.114 -
   1.115 -        /// Inequality operator
   1.116 -        
   1.117 -        /// \sa operator==(Node n)
   1.118 -        ///
   1.119 -        bool operator!=(Node) const { return true; }
   1.120 -
   1.121 -	/// Artificial ordering operator.
   1.122 -	
   1.123 -	/// To allow the use of graph descriptors as key type in std::map or
   1.124 -	/// similar associative container we require this.
   1.125 -	///
   1.126 -	/// \note This operator only have to define some strict ordering of
   1.127 -	/// the items; this order has nothing to do with the iteration
   1.128 -	/// ordering of the items.
   1.129 -	bool operator<(Node) const { return false; }
   1.130 -
   1.131 -      };
   1.132 -
   1.133 -      /// \brief Helper class for ANodes.
   1.134 -      ///
   1.135 -      /// This class is just a helper class for ANodes, it is not
   1.136 -      /// suggested to use it directly. It can be converted easily to
   1.137 -      /// node and vice versa. The usage of this class is limited
   1.138 -      /// to use just as template parameters for special map types. 
   1.139 -      class ANode : public Node {
   1.140 -      public:
   1.141 -        /// Default constructor
   1.142 -
   1.143 -        /// @warning The default constructor sets the iterator
   1.144 -        /// to an undefined value.
   1.145 -        ANode() : Node() { }
   1.146 -        /// Copy constructor.
   1.147 -
   1.148 -        /// Copy constructor.
   1.149 -        ///
   1.150 -        ANode(const ANode&) : Node() { }
   1.151 -
   1.152 -        /// Construct the same node as ANode.
   1.153 -
   1.154 -        /// Construct the same node as ANode. It may throws assertion
   1.155 -        /// when the given node is from the BNode set.
   1.156 -        ANode(const Node&) : Node() { }
   1.157 -
   1.158 -        /// Assign node to A-node.
   1.159 -
   1.160 -        /// Besides the core graph item functionality each node should
   1.161 -        /// be convertible to the represented A-node if it is it possible. 
   1.162 -        ANode& operator=(const Node&) { return *this; }
   1.163 -
   1.164 -        /// Invalid constructor \& conversion.
   1.165 -
   1.166 -        /// This constructor initializes the iterator to be invalid.
   1.167 -        /// \sa Invalid for more details.
   1.168 -        ANode(Invalid) { }
   1.169 -        /// Equality operator
   1.170 -
   1.171 -        /// Two iterators are equal if and only if they point to the
   1.172 -        /// same object or both are invalid.
   1.173 -        bool operator==(ANode) const { return true; }
   1.174 -
   1.175 -        /// Inequality operator
   1.176 -        
   1.177 -        /// \sa operator==(ANode n)
   1.178 -        ///
   1.179 -        bool operator!=(ANode) const { return true; }
   1.180 -
   1.181 -	/// Artificial ordering operator.
   1.182 -	
   1.183 -	/// To allow the use of graph descriptors as key type in std::map or
   1.184 -	/// similar associative container we require this.
   1.185 -	///
   1.186 -	/// \note This operator only have to define some strict ordering of
   1.187 -	/// the items; this order has nothing to do with the iteration
   1.188 -	/// ordering of the items.
   1.189 -	bool operator<(ANode) const { return false; }
   1.190 -
   1.191 -      };
   1.192 -
   1.193 -      /// \brief Helper class for BNodes.
   1.194 -      ///
   1.195 -      /// This class is just a helper class for BNodes, it is not
   1.196 -      /// suggested to use it directly. It can be converted easily to
   1.197 -      /// node and vice versa. The usage of this class is limited
   1.198 -      /// to use just as template parameters for special map types. 
   1.199 -      class BNode : public Node {
   1.200 -      public:
   1.201 -        /// Default constructor
   1.202 -
   1.203 -        /// @warning The default constructor sets the iterator
   1.204 -        /// to an undefined value.
   1.205 -        BNode() : Node() { }
   1.206 -        /// Copy constructor.
   1.207 -
   1.208 -        /// Copy constructor.
   1.209 -        ///
   1.210 -        BNode(const BNode&) : Node() { }
   1.211 -
   1.212 -        /// Construct the same node as BNode.
   1.213 -
   1.214 -        /// Construct the same node as BNode. It may throws assertion
   1.215 -        /// when the given node is from the ANode set.
   1.216 -        BNode(const Node&) : Node() { }
   1.217 -
   1.218 -        /// Assign node to B-node.
   1.219 -
   1.220 -        /// Besides the core graph item functionality each node should
   1.221 -        /// be convertible to the represented B-node if it is it possible. 
   1.222 -        BNode& operator=(const Node&) { return *this; }
   1.223 -
   1.224 -        /// Invalid constructor \& conversion.
   1.225 -
   1.226 -        /// This constructor initializes the iterator to be invalid.
   1.227 -        /// \sa Invalid for more details.
   1.228 -        BNode(Invalid) { }
   1.229 -        /// Equality operator
   1.230 -
   1.231 -        /// Two iterators are equal if and only if they point to the
   1.232 -        /// same object or both are invalid.
   1.233 -        bool operator==(BNode) const { return true; }
   1.234 -
   1.235 -        /// Inequality operator
   1.236 -        
   1.237 -        /// \sa operator==(BNode n)
   1.238 -        ///
   1.239 -        bool operator!=(BNode) const { return true; }
   1.240 -
   1.241 -	/// Artificial ordering operator.
   1.242 -	
   1.243 -	/// To allow the use of graph descriptors as key type in std::map or
   1.244 -	/// similar associative container we require this.
   1.245 -	///
   1.246 -	/// \note This operator only have to define some strict ordering of
   1.247 -	/// the items; this order has nothing to do with the iteration
   1.248 -	/// ordering of the items.
   1.249 -	bool operator<(BNode) const { return false; }
   1.250 -
   1.251 -      };
   1.252 -    
   1.253 -      /// This iterator goes through each node.
   1.254 -
   1.255 -      /// This iterator goes through each node.
   1.256 -      /// Its usage is quite simple, for example you can count the number
   1.257 -      /// of nodes in graph \c g of type \c Graph like this:
   1.258 -      ///\code
   1.259 -      /// int count=0;
   1.260 -      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   1.261 -      ///\endcode
   1.262 -      class NodeIt : public Node {
   1.263 -      public:
   1.264 -        /// Default constructor
   1.265 -
   1.266 -        /// @warning The default constructor sets the iterator
   1.267 -        /// to an undefined value.
   1.268 -        NodeIt() { }
   1.269 -        /// Copy constructor.
   1.270 -        
   1.271 -        /// Copy constructor.
   1.272 -        ///
   1.273 -        NodeIt(const NodeIt& n) : Node(n) { }
   1.274 -        /// Invalid constructor \& conversion.
   1.275 -
   1.276 -        /// Initialize the iterator to be invalid.
   1.277 -        /// \sa Invalid for more details.
   1.278 -        NodeIt(Invalid) { }
   1.279 -        /// Sets the iterator to the first node.
   1.280 -
   1.281 -        /// Sets the iterator to the first node of \c g.
   1.282 -        ///
   1.283 -        NodeIt(const BpUGraph&) { }
   1.284 -        /// Node -> NodeIt conversion.
   1.285 -
   1.286 -        /// Sets the iterator to the node of \c the graph pointed by 
   1.287 -	/// the trivial iterator.
   1.288 -        /// This feature necessitates that each time we 
   1.289 -        /// iterate the edge-set, the iteration order is the same.
   1.290 -        NodeIt(const BpUGraph&, const Node&) { }
   1.291 -        /// Next node.
   1.292 -
   1.293 -        /// Assign the iterator to the next node.
   1.294 -        ///
   1.295 -        NodeIt& operator++() { return *this; }
   1.296 -      };
   1.297 -
   1.298 -      /// This iterator goes through each ANode.
   1.299 -
   1.300 -      /// This iterator goes through each ANode.
   1.301 -      /// Its usage is quite simple, for example you can count the number
   1.302 -      /// of nodes in graph \c g of type \c Graph like this:
   1.303 -      ///\code
   1.304 -      /// int count=0;
   1.305 -      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   1.306 -      ///\endcode
   1.307 -      class ANodeIt : public Node {
   1.308 -      public:
   1.309 -        /// Default constructor
   1.310 -
   1.311 -        /// @warning The default constructor sets the iterator
   1.312 -        /// to an undefined value.
   1.313 -        ANodeIt() { }
   1.314 -        /// Copy constructor.
   1.315 -        
   1.316 -        /// Copy constructor.
   1.317 -        ///
   1.318 -        ANodeIt(const ANodeIt& n) : Node(n) { }
   1.319 -        /// Invalid constructor \& conversion.
   1.320 -
   1.321 -        /// Initialize the iterator to be invalid.
   1.322 -        /// \sa Invalid for more details.
   1.323 -        ANodeIt(Invalid) { }
   1.324 -        /// Sets the iterator to the first node.
   1.325 -
   1.326 -        /// Sets the iterator to the first node of \c g.
   1.327 -        ///
   1.328 -        ANodeIt(const BpUGraph&) { }
   1.329 -        /// Node -> ANodeIt conversion.
   1.330 -
   1.331 -        /// Sets the iterator to the node of \c the graph pointed by 
   1.332 -	/// the trivial iterator.
   1.333 -        /// This feature necessitates that each time we 
   1.334 -        /// iterate the edge-set, the iteration order is the same.
   1.335 -        ANodeIt(const BpUGraph&, const Node&) { }
   1.336 -        /// Next node.
   1.337 -
   1.338 -        /// Assign the iterator to the next node.
   1.339 -        ///
   1.340 -        ANodeIt& operator++() { return *this; }
   1.341 -      };
   1.342 -
   1.343 -      /// This iterator goes through each BNode.
   1.344 -
   1.345 -      /// This iterator goes through each BNode.
   1.346 -      /// Its usage is quite simple, for example you can count the number
   1.347 -      /// of nodes in graph \c g of type \c Graph like this:
   1.348 -      ///\code
   1.349 -      /// int count=0;
   1.350 -      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   1.351 -      ///\endcode
   1.352 -      class BNodeIt : public Node {
   1.353 -      public:
   1.354 -        /// Default constructor
   1.355 -
   1.356 -        /// @warning The default constructor sets the iterator
   1.357 -        /// to an undefined value.
   1.358 -        BNodeIt() { }
   1.359 -        /// Copy constructor.
   1.360 -        
   1.361 -        /// Copy constructor.
   1.362 -        ///
   1.363 -        BNodeIt(const BNodeIt& n) : Node(n) { }
   1.364 -        /// Invalid constructor \& conversion.
   1.365 -
   1.366 -        /// Initialize the iterator to be invalid.
   1.367 -        /// \sa Invalid for more details.
   1.368 -        BNodeIt(Invalid) { }
   1.369 -        /// Sets the iterator to the first node.
   1.370 -
   1.371 -        /// Sets the iterator to the first node of \c g.
   1.372 -        ///
   1.373 -        BNodeIt(const BpUGraph&) { }
   1.374 -        /// Node -> BNodeIt conversion.
   1.375 -
   1.376 -        /// Sets the iterator to the node of \c the graph pointed by 
   1.377 -	/// the trivial iterator.
   1.378 -        /// This feature necessitates that each time we 
   1.379 -        /// iterate the edge-set, the iteration order is the same.
   1.380 -        BNodeIt(const BpUGraph&, const Node&) { }
   1.381 -        /// Next node.
   1.382 -
   1.383 -        /// Assign the iterator to the next node.
   1.384 -        ///
   1.385 -        BNodeIt& operator++() { return *this; }
   1.386 -      };
   1.387 -    
   1.388 -    
   1.389 -      /// The base type of the undirected edge iterators.
   1.390 -
   1.391 -      /// The base type of the undirected edge iterators.
   1.392 -      ///
   1.393 -      class UEdge {
   1.394 -      public:
   1.395 -        /// Default constructor
   1.396 -
   1.397 -        /// @warning The default constructor sets the iterator
   1.398 -        /// to an undefined value.
   1.399 -        UEdge() { }
   1.400 -        /// Copy constructor.
   1.401 -
   1.402 -        /// Copy constructor.
   1.403 -        ///
   1.404 -        UEdge(const UEdge&) { }
   1.405 -        /// Initialize the iterator to be invalid.
   1.406 -
   1.407 -        /// Initialize the iterator to be invalid.
   1.408 -        ///
   1.409 -        UEdge(Invalid) { }
   1.410 -        /// Equality operator
   1.411 -
   1.412 -        /// Two iterators are equal if and only if they point to the
   1.413 -        /// same object or both are invalid.
   1.414 -        bool operator==(UEdge) const { return true; }
   1.415 -        /// Inequality operator
   1.416 -
   1.417 -        /// \sa operator==(UEdge n)
   1.418 -        ///
   1.419 -        bool operator!=(UEdge) const { return true; }
   1.420 -
   1.421 -	/// Artificial ordering operator.
   1.422 -	
   1.423 -	/// To allow the use of graph descriptors as key type in std::map or
   1.424 -	/// similar associative container we require this.
   1.425 -	///
   1.426 -	/// \note This operator only have to define some strict ordering of
   1.427 -	/// the items; this order has nothing to do with the iteration
   1.428 -	/// ordering of the items.
   1.429 -	bool operator<(UEdge) const { return false; }
   1.430 -      };
   1.431 -
   1.432 -      /// This iterator goes through each undirected edge.
   1.433 -
   1.434 -      /// This iterator goes through each undirected edge of a graph.
   1.435 -      /// Its usage is quite simple, for example you can count the number
   1.436 -      /// of undirected edges in a graph \c g of type \c Graph as follows:
   1.437 -      ///\code
   1.438 -      /// int count=0;
   1.439 -      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   1.440 -      ///\endcode
   1.441 -      class UEdgeIt : public UEdge {
   1.442 -      public:
   1.443 -        /// Default constructor
   1.444 -
   1.445 -        /// @warning The default constructor sets the iterator
   1.446 -        /// to an undefined value.
   1.447 -        UEdgeIt() { }
   1.448 -        /// Copy constructor.
   1.449 -
   1.450 -        /// Copy constructor.
   1.451 -        ///
   1.452 -        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   1.453 -        /// Initialize the iterator to be invalid.
   1.454 -
   1.455 -        /// Initialize the iterator to be invalid.
   1.456 -        ///
   1.457 -        UEdgeIt(Invalid) { }
   1.458 -        /// This constructor sets the iterator to the first undirected edge.
   1.459 -    
   1.460 -        /// This constructor sets the iterator to the first undirected edge.
   1.461 -        UEdgeIt(const BpUGraph&) { }
   1.462 -        /// UEdge -> UEdgeIt conversion
   1.463 -
   1.464 -        /// Sets the iterator to the value of the trivial iterator.
   1.465 -        /// This feature necessitates that each time we
   1.466 -        /// iterate the undirected edge-set, the iteration order is the 
   1.467 -	/// same.
   1.468 -        UEdgeIt(const BpUGraph&, const UEdge&) { } 
   1.469 -        /// Next undirected edge
   1.470 -        
   1.471 -        /// Assign the iterator to the next undirected edge.
   1.472 -        UEdgeIt& operator++() { return *this; }
   1.473 -      };
   1.474 -
   1.475 -      /// \brief This iterator goes trough the incident undirected 
   1.476 -      /// edges of a node.
   1.477 -      ///
   1.478 -      /// This iterator goes trough the incident undirected edges
   1.479 -      /// of a certain node
   1.480 -      /// of a graph.
   1.481 -      /// Its usage is quite simple, for example you can compute the
   1.482 -      /// degree (i.e. count the number
   1.483 -      /// of incident edges of a node \c n
   1.484 -      /// in graph \c g of type \c Graph as follows.
   1.485 -      ///\code
   1.486 -      /// int count=0;
   1.487 -      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.488 -      ///\endcode
   1.489 -      class IncEdgeIt : public UEdge {
   1.490 -      public:
   1.491 -        /// Default constructor
   1.492 -
   1.493 -        /// @warning The default constructor sets the iterator
   1.494 -        /// to an undefined value.
   1.495 -        IncEdgeIt() { }
   1.496 -        /// Copy constructor.
   1.497 -
   1.498 -        /// Copy constructor.
   1.499 -        ///
   1.500 -        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   1.501 -        /// Initialize the iterator to be invalid.
   1.502 -
   1.503 -        /// Initialize the iterator to be invalid.
   1.504 -        ///
   1.505 -        IncEdgeIt(Invalid) { }
   1.506 -        /// This constructor sets the iterator to first incident edge.
   1.507 -    
   1.508 -        /// This constructor set the iterator to the first incident edge of
   1.509 -        /// the node.
   1.510 -        IncEdgeIt(const BpUGraph&, const Node&) { }
   1.511 -        /// UEdge -> IncEdgeIt conversion
   1.512 -
   1.513 -        /// Sets the iterator to the value of the trivial iterator \c e.
   1.514 -        /// This feature necessitates that each time we 
   1.515 -        /// iterate the edge-set, the iteration order is the same.
   1.516 -        IncEdgeIt(const BpUGraph&, const UEdge&) { }
   1.517 -        /// Next incident edge
   1.518 -
   1.519 -        /// Assign the iterator to the next incident edge
   1.520 -	/// of the corresponding node.
   1.521 -        IncEdgeIt& operator++() { return *this; }
   1.522 -      };
   1.523 -
   1.524 -      /// The directed edge type.
   1.525 -
   1.526 -      /// The directed edge type. It can be converted to the
   1.527 -      /// undirected edge.
   1.528 -      class Edge : public UEdge {
   1.529 -      public:
   1.530 -        /// Default constructor
   1.531 -
   1.532 -        /// @warning The default constructor sets the iterator
   1.533 -        /// to an undefined value.
   1.534 -        Edge() { }
   1.535 -        /// Copy constructor.
   1.536 -
   1.537 -        /// Copy constructor.
   1.538 -        ///
   1.539 -        Edge(const Edge& e) : UEdge(e) { }
   1.540 -        /// Initialize the iterator to be invalid.
   1.541 -
   1.542 -        /// Initialize the iterator to be invalid.
   1.543 -        ///
   1.544 -        Edge(Invalid) { }
   1.545 -        /// Equality operator
   1.546 -
   1.547 -        /// Two iterators are equal if and only if they point to the
   1.548 -        /// same object or both are invalid.
   1.549 -        bool operator==(Edge) const { return true; }
   1.550 -        /// Inequality operator
   1.551 -
   1.552 -        /// \sa operator==(Edge n)
   1.553 -        ///
   1.554 -        bool operator!=(Edge) const { return true; }
   1.555 -
   1.556 -	/// Artificial ordering operator.
   1.557 -	
   1.558 -	/// To allow the use of graph descriptors as key type in std::map or
   1.559 -	/// similar associative container we require this.
   1.560 -	///
   1.561 -	/// \note This operator only have to define some strict ordering of
   1.562 -	/// the items; this order has nothing to do with the iteration
   1.563 -	/// ordering of the items.
   1.564 -	bool operator<(Edge) const { return false; }
   1.565 -	
   1.566 -      }; 
   1.567 -      /// This iterator goes through each directed edge.
   1.568 -
   1.569 -      /// This iterator goes through each edge of a graph.
   1.570 -      /// Its usage is quite simple, for example you can count the number
   1.571 -      /// of edges in a graph \c g of type \c Graph as follows:
   1.572 -      ///\code
   1.573 -      /// int count=0;
   1.574 -      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   1.575 -      ///\endcode
   1.576 -      class EdgeIt : public Edge {
   1.577 -      public:
   1.578 -        /// Default constructor
   1.579 -
   1.580 -        /// @warning The default constructor sets the iterator
   1.581 -        /// to an undefined value.
   1.582 -        EdgeIt() { }
   1.583 -        /// Copy constructor.
   1.584 -
   1.585 -        /// Copy constructor.
   1.586 -        ///
   1.587 -        EdgeIt(const EdgeIt& e) : Edge(e) { }
   1.588 -        /// Initialize the iterator to be invalid.
   1.589 -
   1.590 -        /// Initialize the iterator to be invalid.
   1.591 -        ///
   1.592 -        EdgeIt(Invalid) { }
   1.593 -        /// This constructor sets the iterator to the first edge.
   1.594 -    
   1.595 -        /// This constructor sets the iterator to the first edge of \c g.
   1.596 -        ///@param g the graph
   1.597 -        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   1.598 -        /// Edge -> EdgeIt conversion
   1.599 -
   1.600 -        /// Sets the iterator to the value of the trivial iterator \c e.
   1.601 -        /// This feature necessitates that each time we 
   1.602 -        /// iterate the edge-set, the iteration order is the same.
   1.603 -        EdgeIt(const BpUGraph&, const Edge&) { } 
   1.604 -        ///Next edge
   1.605 -        
   1.606 -        /// Assign the iterator to the next edge.
   1.607 -        EdgeIt& operator++() { return *this; }
   1.608 -      };
   1.609 -   
   1.610 -      /// This iterator goes trough the outgoing directed edges of a node.
   1.611 -
   1.612 -      /// This iterator goes trough the \e outgoing edges of a certain node
   1.613 -      /// of a graph.
   1.614 -      /// Its usage is quite simple, for example you can count the number
   1.615 -      /// of outgoing edges of a node \c n
   1.616 -      /// in graph \c g of type \c Graph as follows.
   1.617 -      ///\code
   1.618 -      /// int count=0;
   1.619 -      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.620 -      ///\endcode
   1.621 -    
   1.622 -      class OutEdgeIt : public Edge {
   1.623 -      public:
   1.624 -        /// Default constructor
   1.625 -
   1.626 -        /// @warning The default constructor sets the iterator
   1.627 -        /// to an undefined value.
   1.628 -        OutEdgeIt() { }
   1.629 -        /// Copy constructor.
   1.630 -
   1.631 -        /// Copy constructor.
   1.632 -        ///
   1.633 -        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   1.634 -        /// Initialize the iterator to be invalid.
   1.635 -
   1.636 -        /// Initialize the iterator to be invalid.
   1.637 -        ///
   1.638 -        OutEdgeIt(Invalid) { }
   1.639 -        /// This constructor sets the iterator to the first outgoing edge.
   1.640 -    
   1.641 -        /// This constructor sets the iterator to the first outgoing edge of
   1.642 -        /// the node.
   1.643 -        ///@param n the node
   1.644 -        ///@param g the graph
   1.645 -        OutEdgeIt(const BpUGraph& n, const Node& g) {
   1.646 -	  ignore_unused_variable_warning(n);
   1.647 -	  ignore_unused_variable_warning(g);
   1.648 -	}
   1.649 -        /// Edge -> OutEdgeIt conversion
   1.650 -
   1.651 -        /// Sets the iterator to the value of the trivial iterator.
   1.652 -	/// This feature necessitates that each time we 
   1.653 -        /// iterate the edge-set, the iteration order is the same.
   1.654 -        OutEdgeIt(const BpUGraph&, const Edge&) { }
   1.655 -        ///Next outgoing edge
   1.656 -        
   1.657 -        /// Assign the iterator to the next 
   1.658 -        /// outgoing edge of the corresponding node.
   1.659 -        OutEdgeIt& operator++() { return *this; }
   1.660 -      };
   1.661 -
   1.662 -      /// This iterator goes trough the incoming directed edges of a node.
   1.663 -
   1.664 -      /// This iterator goes trough the \e incoming edges of a certain node
   1.665 -      /// of a graph.
   1.666 -      /// Its usage is quite simple, for example you can count the number
   1.667 -      /// of outgoing edges of a node \c n
   1.668 -      /// in graph \c g of type \c Graph as follows.
   1.669 -      ///\code
   1.670 -      /// int count=0;
   1.671 -      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.672 -      ///\endcode
   1.673 -
   1.674 -      class InEdgeIt : public Edge {
   1.675 -      public:
   1.676 -        /// Default constructor
   1.677 -
   1.678 -        /// @warning The default constructor sets the iterator
   1.679 -        /// to an undefined value.
   1.680 -        InEdgeIt() { }
   1.681 -        /// Copy constructor.
   1.682 -
   1.683 -        /// Copy constructor.
   1.684 -        ///
   1.685 -        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   1.686 -        /// Initialize the iterator to be invalid.
   1.687 -
   1.688 -        /// Initialize the iterator to be invalid.
   1.689 -        ///
   1.690 -        InEdgeIt(Invalid) { }
   1.691 -        /// This constructor sets the iterator to first incoming edge.
   1.692 -    
   1.693 -        /// This constructor set the iterator to the first incoming edge of
   1.694 -        /// the node.
   1.695 -        ///@param n the node
   1.696 -        ///@param g the graph
   1.697 -        InEdgeIt(const BpUGraph& g, const Node& n) { 
   1.698 -	  ignore_unused_variable_warning(n);
   1.699 -	  ignore_unused_variable_warning(g);
   1.700 -	}
   1.701 -        /// Edge -> InEdgeIt conversion
   1.702 -
   1.703 -        /// Sets the iterator to the value of the trivial iterator \c e.
   1.704 -        /// This feature necessitates that each time we 
   1.705 -        /// iterate the edge-set, the iteration order is the same.
   1.706 -        InEdgeIt(const BpUGraph&, const Edge&) { }
   1.707 -        /// Next incoming edge
   1.708 -
   1.709 -        /// Assign the iterator to the next inedge of the corresponding node.
   1.710 -        ///
   1.711 -        InEdgeIt& operator++() { return *this; }
   1.712 -      };
   1.713 -
   1.714 -      /// \brief Read write map of the nodes to type \c T.
   1.715 -      /// 
   1.716 -      /// ReadWrite map of the nodes to type \c T.
   1.717 -      /// \sa Reference
   1.718 -      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.719 -      /// needs some extra attention!
   1.720 -      /// \todo Wrong documentation
   1.721 -      template<class T> 
   1.722 -      class NodeMap : public ReadWriteMap< Node, T >
   1.723 -      {
   1.724 -      public:
   1.725 -
   1.726 -        ///\e
   1.727 -        NodeMap(const BpUGraph&) { }
   1.728 -        ///\e
   1.729 -        NodeMap(const BpUGraph&, T) { }
   1.730 -
   1.731 -        ///Copy constructor
   1.732 -        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.733 -        ///Assignment operator
   1.734 -        NodeMap& operator=(const NodeMap&) { return *this; }
   1.735 -        ///Assignment operator
   1.736 -        template <typename CMap>
   1.737 -        NodeMap& operator=(const CMap&) { 
   1.738 -          checkConcept<ReadMap<Node, T>, CMap>();
   1.739 -          return *this; 
   1.740 -        }
   1.741 -      };
   1.742 -
   1.743 -      /// \brief Read write map of the ANodes to type \c T.
   1.744 -      /// 
   1.745 -      /// ReadWrite map of the ANodes to type \c T.
   1.746 -      /// \sa Reference
   1.747 -      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.748 -      /// needs some extra attention!
   1.749 -      /// \todo Wrong documentation
   1.750 -      template<class T> 
   1.751 -      class ANodeMap : public ReadWriteMap< Node, T >
   1.752 -      {
   1.753 -      public:
   1.754 -
   1.755 -        ///\e
   1.756 -        ANodeMap(const BpUGraph&) { }
   1.757 -        ///\e
   1.758 -        ANodeMap(const BpUGraph&, T) { }
   1.759 -
   1.760 -        ///Copy constructor
   1.761 -        ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.762 -        ///Assignment operator
   1.763 -        ANodeMap& operator=(const ANodeMap&) { return *this; }
   1.764 -        ///Assignment operator
   1.765 -        template <typename CMap>
   1.766 -        ANodeMap& operator=(const CMap&) { 
   1.767 -          checkConcept<ReadMap<Node, T>, CMap>();
   1.768 -          return *this; 
   1.769 -        }
   1.770 -      };
   1.771 -
   1.772 -      /// \brief Read write map of the BNodes to type \c T.
   1.773 -      /// 
   1.774 -      /// ReadWrite map of the BNodes to type \c T.
   1.775 -      /// \sa Reference
   1.776 -      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.777 -      /// needs some extra attention!
   1.778 -      /// \todo Wrong documentation
   1.779 -      template<class T> 
   1.780 -      class BNodeMap : public ReadWriteMap< Node, T >
   1.781 -      {
   1.782 -      public:
   1.783 -
   1.784 -        ///\e
   1.785 -        BNodeMap(const BpUGraph&) { }
   1.786 -        ///\e
   1.787 -        BNodeMap(const BpUGraph&, T) { }
   1.788 -
   1.789 -        ///Copy constructor
   1.790 -        BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.791 -        ///Assignment operator
   1.792 -        BNodeMap& operator=(const BNodeMap&) { return *this; }
   1.793 -        ///Assignment operator
   1.794 -        template <typename CMap>
   1.795 -        BNodeMap& operator=(const CMap&) { 
   1.796 -          checkConcept<ReadMap<Node, T>, CMap>();
   1.797 -          return *this; 
   1.798 -        }
   1.799 -      };
   1.800 -
   1.801 -      /// \brief Read write map of the directed edges to type \c T.
   1.802 -      ///
   1.803 -      /// Reference map of the directed edges to type \c T.
   1.804 -      /// \sa Reference
   1.805 -      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   1.806 -      /// needs some extra attention!
   1.807 -      /// \todo Wrong documentation
   1.808 -      template<class T> 
   1.809 -      class EdgeMap : public ReadWriteMap<Edge,T>
   1.810 -      {
   1.811 -      public:
   1.812 -
   1.813 -        ///\e
   1.814 -        EdgeMap(const BpUGraph&) { }
   1.815 -        ///\e
   1.816 -        EdgeMap(const BpUGraph&, T) { }
   1.817 -        ///Copy constructor
   1.818 -        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   1.819 -        ///Assignment operator
   1.820 -        EdgeMap& operator=(const EdgeMap&) { return *this; }
   1.821 -        ///Assignment operator
   1.822 -        template <typename CMap>
   1.823 -        EdgeMap& operator=(const CMap&) { 
   1.824 -          checkConcept<ReadMap<Edge, T>, CMap>();
   1.825 -          return *this; 
   1.826 -        }
   1.827 -      };
   1.828 -
   1.829 -      /// Read write map of the undirected edges to type \c T.
   1.830 -
   1.831 -      /// Reference map of the edges to type \c T.
   1.832 -      /// \sa Reference
   1.833 -      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   1.834 -      /// needs some extra attention!
   1.835 -      /// \todo Wrong documentation
   1.836 -      template<class T> 
   1.837 -      class UEdgeMap : public ReadWriteMap<UEdge,T>
   1.838 -      {
   1.839 -      public:
   1.840 -
   1.841 -        ///\e
   1.842 -        UEdgeMap(const BpUGraph&) { }
   1.843 -        ///\e
   1.844 -        UEdgeMap(const BpUGraph&, T) { }
   1.845 -        ///Copy constructor
   1.846 -        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   1.847 -        ///Assignment operator
   1.848 -        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   1.849 -        ///Assignment operator
   1.850 -        template <typename CMap>
   1.851 -        UEdgeMap& operator=(const CMap&) { 
   1.852 -          checkConcept<ReadMap<UEdge, T>, CMap>();
   1.853 -          return *this; 
   1.854 -        }
   1.855 -      };
   1.856 -
   1.857 -      /// \brief Direct the given undirected edge.
   1.858 -      ///
   1.859 -      /// Direct the given undirected edge. The returned edge source
   1.860 -      /// will be the given node.
   1.861 -      Edge direct(const UEdge&, const Node&) const {
   1.862 -	return INVALID;
   1.863 -      }
   1.864 -
   1.865 -      /// \brief Direct the given undirected edge.
   1.866 -      ///
   1.867 -      /// Direct the given undirected edge. The returned edge
   1.868 -      /// represents the given undireted edge and the direction comes
   1.869 -      /// from the given bool.  The source of the undirected edge and
   1.870 -      /// the directed edge is the same when the given bool is true.
   1.871 -      Edge direct(const UEdge&, bool) const {
   1.872 -	return INVALID;
   1.873 -      }
   1.874 -
   1.875 -      /// \brief Returns true when the given node is an ANode.
   1.876 -      ///
   1.877 -      /// Returns true when the given node is an ANode.
   1.878 -      bool aNode(Node) const { return true;}
   1.879 -
   1.880 -      /// \brief Returns true when the given node is an BNode.
   1.881 -      ///
   1.882 -      /// Returns true when the given node is an BNode.
   1.883 -      bool bNode(Node) const { return true;}
   1.884 -
   1.885 -      /// \brief Returns the edge's end node which is in the ANode set.
   1.886 -      ///
   1.887 -      /// Returns the edge's end node which is in the ANode set.
   1.888 -      Node aNode(UEdge) const { return INVALID;}
   1.889 -
   1.890 -      /// \brief Returns the edge's end node which is in the BNode set.
   1.891 -      ///
   1.892 -      /// Returns the edge's end node which is in the BNode set.
   1.893 -      Node bNode(UEdge) const { return INVALID;}
   1.894 -
   1.895 -      /// \brief Returns true if the edge has default orientation.
   1.896 -      ///
   1.897 -      /// Returns whether the given directed edge is same orientation as
   1.898 -      /// the corresponding undirected edge's default orientation.
   1.899 -      bool direction(Edge) const { return true; }
   1.900 -
   1.901 -      /// \brief Returns the opposite directed edge.
   1.902 -      ///
   1.903 -      /// Returns the opposite directed edge.
   1.904 -      Edge oppositeEdge(Edge) const { return INVALID; }
   1.905 -
   1.906 -      /// \brief Opposite node on an edge
   1.907 -      ///
   1.908 -      /// \return the opposite of the given Node on the given UEdge
   1.909 -      Node oppositeNode(Node, UEdge) const { return INVALID; }
   1.910 -
   1.911 -      /// \brief First node of the undirected edge.
   1.912 -      ///
   1.913 -      /// \return the first node of the given UEdge.
   1.914 -      ///
   1.915 -      /// Naturally undirected edges don't have direction and thus
   1.916 -      /// don't have source and target node. But we use these two methods
   1.917 -      /// to query the two endnodes of the edge. The direction of the edge
   1.918 -      /// which arises this way is called the inherent direction of the
   1.919 -      /// undirected edge, and is used to define the "default" direction
   1.920 -      /// of the directed versions of the edges.
   1.921 -      /// \sa direction
   1.922 -      Node source(UEdge) const { return INVALID; }
   1.923 -
   1.924 -      /// \brief Second node of the undirected edge.
   1.925 -      Node target(UEdge) const { return INVALID; }
   1.926 -
   1.927 -      /// \brief Source node of the directed edge.
   1.928 -      Node source(Edge) const { return INVALID; }
   1.929 -
   1.930 -      /// \brief Target node of the directed edge.
   1.931 -      Node target(Edge) const { return INVALID; }
   1.932 -
   1.933 -      /// \brief Base node of the iterator
   1.934 -      ///
   1.935 -      /// Returns the base node (the source in this case) of the iterator
   1.936 -      Node baseNode(OutEdgeIt e) const {
   1.937 -	return source(e);
   1.938 -      }
   1.939 -
   1.940 -      /// \brief Running node of the iterator
   1.941 -      ///
   1.942 -      /// Returns the running node (the target in this case) of the
   1.943 -      /// iterator
   1.944 -      Node runningNode(OutEdgeIt e) const {
   1.945 -	return target(e);
   1.946 -      }
   1.947 -
   1.948 -      /// \brief Base node of the iterator
   1.949 -      ///
   1.950 -      /// Returns the base node (the target in this case) of the iterator
   1.951 -      Node baseNode(InEdgeIt e) const {
   1.952 -	return target(e);
   1.953 -      }
   1.954 -      /// \brief Running node of the iterator
   1.955 -      ///
   1.956 -      /// Returns the running node (the source in this case) of the
   1.957 -      /// iterator
   1.958 -      Node runningNode(InEdgeIt e) const {
   1.959 -	return source(e);
   1.960 -      }
   1.961 -
   1.962 -      /// \brief Base node of the iterator
   1.963 -      ///
   1.964 -      /// Returns the base node of the iterator
   1.965 -      Node baseNode(IncEdgeIt) const {
   1.966 -	return INVALID;
   1.967 -      }
   1.968 -      
   1.969 -      /// \brief Running node of the iterator
   1.970 -      ///
   1.971 -      /// Returns the running node of the iterator
   1.972 -      Node runningNode(IncEdgeIt) const {
   1.973 -	return INVALID;
   1.974 -      }
   1.975 -
   1.976 -      void first(Node&) const {}
   1.977 -      void next(Node&) const {}
   1.978 -
   1.979 -      void first(Edge&) const {}
   1.980 -      void next(Edge&) const {}
   1.981 -
   1.982 -      void first(UEdge&) const {}
   1.983 -      void next(UEdge&) const {}
   1.984 -
   1.985 -      void firstANode(Node&) const {}
   1.986 -      void nextANode(Node&) const {}
   1.987 -
   1.988 -      void firstBNode(Node&) const {}
   1.989 -      void nextBNode(Node&) const {}
   1.990 -
   1.991 -      void firstIn(Edge&, const Node&) const {}
   1.992 -      void nextIn(Edge&) const {}
   1.993 -
   1.994 -      void firstOut(Edge&, const Node&) const {}
   1.995 -      void nextOut(Edge&) const {}
   1.996 -
   1.997 -      void firstInc(UEdge &, bool &, const Node &) const {}
   1.998 -      void nextInc(UEdge &, bool &) const {}
   1.999 -
  1.1000 -      void firstFromANode(UEdge&, const Node&) const {}
  1.1001 -      void nextFromANode(UEdge&) const {}
  1.1002 -
  1.1003 -      void firstFromBNode(UEdge&, const Node&) const {}
  1.1004 -      void nextFromBNode(UEdge&) const {}
  1.1005 -
  1.1006 -      template <typename Graph>
  1.1007 -      struct Constraints {
  1.1008 -	void constraints() {
  1.1009 -	  checkConcept<IterableBpUGraphComponent<>, Graph>();
  1.1010 -	  checkConcept<MappableBpUGraphComponent<>, Graph>();
  1.1011 -	}
  1.1012 -      };
  1.1013 -
  1.1014 -    };
  1.1015 -
  1.1016 -
  1.1017 -    /// @}
  1.1018 -
  1.1019 -  }
  1.1020 -
  1.1021 -}
  1.1022 -
  1.1023 -#endif