lemon/lp_base.h
changeset 1445 4635352e5524
parent 1439 2c43106bef85
child 1458 7a483c1d38b5
     1.1 --- a/lemon/lp_base.h	Fri Jun 03 12:25:23 2005 +0000
     1.2 +++ b/lemon/lp_base.h	Sat Jun 04 12:50:15 2005 +0000
     1.3 @@ -410,6 +410,116 @@
     1.4        }
     1.5      };
     1.6      
     1.7 +    ///Linear expression of rows
     1.8 +    
     1.9 +    ///This data structure represents a column of the matrix,
    1.10 +    ///thas is it strores a linear expression of the dual variables
    1.11 +    ///(\ref Row "Row"s).
    1.12 +    ///
    1.13 +    ///There are several ways to access and modify the contents of this
    1.14 +    ///container.
    1.15 +    ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
    1.16 +    ///if \c e is an DualExpr and \c v
    1.17 +    ///and \c w are of type \ref Row, then you can
    1.18 +    ///read and modify the coefficients like
    1.19 +    ///these.
    1.20 +    ///\code
    1.21 +    ///e[v]=5;
    1.22 +    ///e[v]+=12;
    1.23 +    ///e.erase(v);
    1.24 +    ///\endcode
    1.25 +    ///or you can also iterate through its elements.
    1.26 +    ///\code
    1.27 +    ///double s=0;
    1.28 +    ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
    1.29 +    ///  s+=i->second;
    1.30 +    ///\endcode
    1.31 +    ///(This code computes the sum of all coefficients).
    1.32 +    ///- Numbers (<tt>double</tt>'s)
    1.33 +    ///and variables (\ref Row "Row"s) directly convert to an
    1.34 +    ///\ref DualExpr and the usual linear operations are defined so  
    1.35 +    ///\code
    1.36 +    ///v+w
    1.37 +    ///2*v-3.12*(v-w/2)
    1.38 +    ///v*2.1+(3*v+(v*12+w)*3)/2
    1.39 +    ///\endcode
    1.40 +    ///are valid \ref DualExpr "DualExpr"essions.
    1.41 +    ///The usual assignment operations are also defined.
    1.42 +    ///\code
    1.43 +    ///e=v+w;
    1.44 +    ///e+=2*v-3.12*(v-w/2);
    1.45 +    ///e*=3.4;
    1.46 +    ///e/=5;
    1.47 +    ///\endcode
    1.48 +    ///
    1.49 +    ///\sa Expr
    1.50 +    ///
    1.51 +    class DualExpr : public std::map<Row,Value>
    1.52 +    {
    1.53 +    public:
    1.54 +      typedef LpSolverBase::Row Key; 
    1.55 +      typedef LpSolverBase::Value Value;
    1.56 +      
    1.57 +    protected:
    1.58 +      typedef std::map<Row,Value> Base;
    1.59 +      
    1.60 +    public:
    1.61 +      typedef True IsLinExpression;
    1.62 +      ///\e
    1.63 +      DualExpr() : Base() { }
    1.64 +      ///\e
    1.65 +      DualExpr(const Key &v) {
    1.66 +	Base::insert(std::make_pair(v, 1));
    1.67 +      }
    1.68 +      ///\e
    1.69 +      DualExpr(const Value &v) {}
    1.70 +      ///\e
    1.71 +      void set(const Key &v,const Value &c) {
    1.72 +	Base::insert(std::make_pair(v, c));
    1.73 +      }
    1.74 +      
    1.75 +      ///Removes the components with zero coefficient.
    1.76 +      void simplify() {
    1.77 +	for (Base::iterator i=Base::begin(); i!=Base::end();) {
    1.78 +	  Base::iterator j=i;
    1.79 +	  ++j;
    1.80 +	  if ((*i).second==0) Base::erase(i);
    1.81 +	  j=i;
    1.82 +	}
    1.83 +      }
    1.84 +
    1.85 +      ///Sets all coefficients to 0.
    1.86 +      void clear() {
    1.87 +	Base::clear();
    1.88 +      }
    1.89 +
    1.90 +      ///\e
    1.91 +      DualExpr &operator+=(const DualExpr &e) {
    1.92 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
    1.93 +	  (*this)[j->first]+=j->second;
    1.94 +	///\todo it might be speeded up using "hints"
    1.95 +	return *this;
    1.96 +      }
    1.97 +      ///\e
    1.98 +      DualExpr &operator-=(const DualExpr &e) {
    1.99 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.100 +	  (*this)[j->first]-=j->second;
   1.101 +	return *this;
   1.102 +      }
   1.103 +      ///\e
   1.104 +      DualExpr &operator*=(const Value &c) {
   1.105 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.106 +	  j->second*=c;
   1.107 +	return *this;
   1.108 +      }
   1.109 +      ///\e
   1.110 +      DualExpr &operator/=(const Value &c) {
   1.111 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.112 +	  j->second/=c;
   1.113 +	return *this;
   1.114 +      }
   1.115 +    };
   1.116 +    
   1.117  
   1.118    protected:
   1.119      _FixId rows;
   1.120 @@ -547,13 +657,113 @@
   1.121      }
   1.122  #endif
   1.123  
   1.124 -    ///Add a new empty row (i.e a new constaint) to the LP
   1.125 +    ///Set a column (i.e a dual constraint) of the LP
   1.126  
   1.127 -    ///This function adds a new empty row (i.e a new constaint) to the LP.
   1.128 +    ///\param c is the column to be modified
   1.129 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.130 +    ///\bug This is a temportary function. The interface will change to
   1.131 +    ///a better one.
   1.132 +    void setCol(Col c,const DualExpr &e) {
   1.133 +      std::vector<int> indices;
   1.134 +      std::vector<Value> values;
   1.135 +      indices.push_back(0);
   1.136 +      values.push_back(0);
   1.137 +      for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
   1.138 +	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   1.139 +	  indices.push_back(cols.floatingId((*i).first.id));
   1.140 +	  values.push_back((*i).second);
   1.141 +	}
   1.142 +      _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
   1.143 +		    &indices[0],&values[0]);
   1.144 +    }
   1.145 +
   1.146 +    ///Add a new column to the LP
   1.147 +
   1.148 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.149 +    ///\param obj is the corresponding component of the objective
   1.150 +    ///function. It is 0 by default.
   1.151 +    ///\return The created column.
   1.152 +    ///\bug This is a temportary function. The interface will change to
   1.153 +    ///a better one.
   1.154 +    Col addCol(Value l,const DualExpr &e, Value obj=0) {
   1.155 +      Col c=addCol();
   1.156 +      setCol(c,e);
   1.157 +      objCoeff(c,0);
   1.158 +      return c;
   1.159 +    }
   1.160 +
   1.161 +    ///Add a new empty row (i.e a new constraint) to the LP
   1.162 +
   1.163 +    ///This function adds a new empty row (i.e a new constraint) to the LP.
   1.164      ///\return The created row
   1.165      Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   1.166  
   1.167 -    ///Set a row (i.e a constaint) of the LP
   1.168 +    ///\brief Adds several new row
   1.169 +    ///(i.e a variables) at once
   1.170 +    ///
   1.171 +    ///This magic function takes a container as its argument
   1.172 +    ///and fills its elements
   1.173 +    ///with new row (i.e. variables)
   1.174 +    ///\param t can be
   1.175 +    ///- a standard STL compatible iterable container with
   1.176 +    ///\ref Row as its \c values_type
   1.177 +    ///like
   1.178 +    ///\code
   1.179 +    ///std::vector<LpSolverBase::Row>
   1.180 +    ///std::list<LpSolverBase::Row>
   1.181 +    ///\endcode
   1.182 +    ///- a standard STL compatible iterable container with
   1.183 +    ///\ref Row as its \c mapped_type
   1.184 +    ///like
   1.185 +    ///\code
   1.186 +    ///std::map<AnyType,LpSolverBase::Row>
   1.187 +    ///\endcode
   1.188 +    ///- an iterable lemon \ref concept::WriteMap "write map" like 
   1.189 +    ///\code
   1.190 +    ///ListGraph::NodeMap<LpSolverBase::Row>
   1.191 +    ///ListGraph::EdgeMap<LpSolverBase::Row>
   1.192 +    ///\endcode
   1.193 +    ///\return The number of rows created.
   1.194 +#ifdef DOXYGEN
   1.195 +    template<class T>
   1.196 +    int addRowSet(T &t) { return 0;} 
   1.197 +#else
   1.198 +    template<class T>
   1.199 +    typename enable_if<typename T::value_type::LpSolverRow,int>::type
   1.200 +    addRowSet(T &t,dummy<0> = 0) {
   1.201 +      int s=0;
   1.202 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   1.203 +      return s;
   1.204 +    }
   1.205 +    template<class T>
   1.206 +    typename enable_if<typename T::value_type::second_type::LpSolverRow,
   1.207 +		       int>::type
   1.208 +    addRowSet(T &t,dummy<1> = 1) { 
   1.209 +      int s=0;
   1.210 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.211 +	i->second=addRow();
   1.212 +	s++;
   1.213 +      }
   1.214 +      return s;
   1.215 +    }
   1.216 +    template<class T>
   1.217 +    typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
   1.218 +		       int>::type
   1.219 +    addRowSet(T &t,dummy<2> = 2) { 
   1.220 +      ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
   1.221 +      int s=0;
   1.222 +      for(typename T::ValueSet::iterator i=t.valueSet().begin();
   1.223 +	  i!=t.valueSet().end();
   1.224 +	  ++i)
   1.225 +	{
   1.226 +	  *i=addRow();
   1.227 +	  s++;
   1.228 +	}
   1.229 +      return s;
   1.230 +    }
   1.231 +#endif
   1.232 +
   1.233 +    ///Set a row (i.e a constraint) of the LP
   1.234  
   1.235      ///\param r is the row to be modified
   1.236      ///\param l is lower bound (-\ref INF means no bound)
   1.237 @@ -580,7 +790,7 @@
   1.238         _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   1.239      }
   1.240  
   1.241 -    ///Set a row (i.e a constaint) of the LP
   1.242 +    ///Set a row (i.e a constraint) of the LP
   1.243  
   1.244      ///\param r is the row to be modified
   1.245      ///\param c is a linear expression (see \ref Constr)
   1.246 @@ -591,7 +801,7 @@
   1.247  	     c.upperBounded()?c.upperBound():INF);
   1.248      }
   1.249  
   1.250 -    ///Add a new row (i.e a new constaint) to the LP
   1.251 +    ///Add a new row (i.e a new constraint) to the LP
   1.252  
   1.253      ///\param l is the lower bound (-\ref INF means no bound)
   1.254      ///\param e is a linear expression (see \ref Expr)
   1.255 @@ -605,7 +815,7 @@
   1.256        return r;
   1.257      }
   1.258  
   1.259 -    ///Add a new row (i.e a new constaint) to the LP
   1.260 +    ///Add a new row (i.e a new constraint) to the LP
   1.261  
   1.262      ///\param c is a linear expression (see \ref Constr)
   1.263      ///\return The created row.
   1.264 @@ -917,6 +1127,63 @@
   1.265      return tmp;
   1.266    }
   1.267  
   1.268 +  ///\e
   1.269 +  
   1.270 +  ///\relates LpSolverBase::DualExpr
   1.271 +  ///
   1.272 +  inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
   1.273 +				      const LpSolverBase::DualExpr &b) 
   1.274 +  {
   1.275 +    LpSolverBase::DualExpr tmp(a);
   1.276 +    tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.277 +    return tmp;
   1.278 +  }
   1.279 +  ///\e
   1.280 +  
   1.281 +  ///\relates LpSolverBase::DualExpr
   1.282 +  ///
   1.283 +  inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
   1.284 +				      const LpSolverBase::DualExpr &b) 
   1.285 +  {
   1.286 +    LpSolverBase::DualExpr tmp(a);
   1.287 +    tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.288 +    return tmp;
   1.289 +  }
   1.290 +  ///\e
   1.291 +  
   1.292 +  ///\relates LpSolverBase::DualExpr
   1.293 +  ///
   1.294 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
   1.295 +				      const LpSolverBase::Value &b) 
   1.296 +  {
   1.297 +    LpSolverBase::DualExpr tmp(a);
   1.298 +    tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.299 +    return tmp;
   1.300 +  }
   1.301 +  
   1.302 +  ///\e
   1.303 +  
   1.304 +  ///\relates LpSolverBase::DualExpr
   1.305 +  ///
   1.306 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
   1.307 +				      const LpSolverBase::DualExpr &b) 
   1.308 +  {
   1.309 +    LpSolverBase::DualExpr tmp(b);
   1.310 +    tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.311 +    return tmp;
   1.312 +  }
   1.313 +  ///\e
   1.314 +  
   1.315 +  ///\relates LpSolverBase::DualExpr
   1.316 +  ///
   1.317 +  inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
   1.318 +				      const LpSolverBase::Value &b) 
   1.319 +  {
   1.320 +    LpSolverBase::DualExpr tmp(a);
   1.321 +    tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.322 +    return tmp;
   1.323 +  }
   1.324 +  
   1.325  
   1.326  } //namespace lemon
   1.327