src/hugo/mincostflows.h
changeset 610 4ce8c695e748
child 611 83530dad618a
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/hugo/mincostflows.h	Tue May 11 16:15:18 2004 +0000
     1.3 @@ -0,0 +1,254 @@
     1.4 +// -*- c++ -*-
     1.5 +#ifndef HUGO_MINCOSTFLOWS_H
     1.6 +#define HUGO_MINCOSTFLOWS_H
     1.7 +
     1.8 +///\ingroup galgs
     1.9 +///\file
    1.10 +///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
    1.11 +
    1.12 +#include <iostream>
    1.13 +#include <hugo/dijkstra.h>
    1.14 +#include <hugo/graph_wrapper.h>
    1.15 +#include <hugo/maps.h>
    1.16 +#include <vector>
    1.17 +#include <for_each_macros.h>
    1.18 +
    1.19 +namespace hugo {
    1.20 +
    1.21 +/// \addtogroup galgs
    1.22 +/// @{
    1.23 +
    1.24 +  ///\brief Implementation of an algorithm for finding a flow of value \c k 
    1.25 +  ///(for small values of \c k) having minimal total cost between 2 nodes 
    1.26 +  /// 
    1.27 +  ///
    1.28 +  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    1.29 +  /// an algorithm for finding a flow of value \c k 
    1.30 +  ///(for small values of \c k) having minimal total cost  
    1.31 +  /// from a given source node to a given target node in an
    1.32 +  /// edge-weighted directed graph having nonnegative integer capacities.
    1.33 +  /// The range of the length (weight) function is nonnegative reals but 
    1.34 +  /// the range of capacity function is the set of nonnegative integers. 
    1.35 +  /// It is not a polinomial time algorithm for counting the minimum cost
    1.36 +  /// maximal flow, since it counts the minimum cost flow for every value 0..M
    1.37 +  /// where \c M is the value of the maximal flow.
    1.38 +  ///
    1.39 +  ///\author Attila Bernath
    1.40 +  template <typename Graph, typename LengthMap, typename CapacityMap>
    1.41 +  class MinCostFlows {
    1.42 +
    1.43 +    typedef typename LengthMap::ValueType Length;
    1.44 +
    1.45 +    //Warning: this should be integer type
    1.46 +    typedef typename CapacityMap::ValueType Capacity;
    1.47 +    
    1.48 +    typedef typename Graph::Node Node;
    1.49 +    typedef typename Graph::NodeIt NodeIt;
    1.50 +    typedef typename Graph::Edge Edge;
    1.51 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.52 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.53 +
    1.54 +    //    typedef ConstMap<Edge,int> ConstMap;
    1.55 +
    1.56 +    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    1.57 +    typedef typename ResGraphType::Edge ResGraphEdge;
    1.58 +
    1.59 +    class ModLengthMap {   
    1.60 +      //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    1.61 +      typedef typename Graph::template NodeMap<Length> NodeMap;
    1.62 +      const ResGraphType& G;
    1.63 +      //      const EdgeIntMap& rev;
    1.64 +      const LengthMap &ol;
    1.65 +      const NodeMap &pot;
    1.66 +    public :
    1.67 +      typedef typename LengthMap::KeyType KeyType;
    1.68 +      typedef typename LengthMap::ValueType ValueType;
    1.69 +	
    1.70 +      ValueType operator[](typename ResGraphType::Edge e) const {     
    1.71 +	if (G.forward(e))
    1.72 +	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.73 +	else
    1.74 +	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.75 +      }     
    1.76 +	
    1.77 +      ModLengthMap(const ResGraphType& _G,
    1.78 +		   const LengthMap &o,  const NodeMap &p) : 
    1.79 +	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    1.80 +    };//ModLengthMap
    1.81 +
    1.82 +
    1.83 +  protected:
    1.84 +    
    1.85 +    //Input
    1.86 +    const Graph& G;
    1.87 +    const LengthMap& length;
    1.88 +    const CapacityMap& capacity;
    1.89 +
    1.90 +
    1.91 +    //auxiliary variables
    1.92 +
    1.93 +    //To store the flow
    1.94 +    EdgeIntMap flow; 
    1.95 +    //To store the potentila (dual variables)
    1.96 +    typename Graph::template NodeMap<Length> potential;
    1.97 +    
    1.98 +    //Container to store found paths
    1.99 +    //std::vector< std::vector<Edge> > paths;
   1.100 +    //typedef DirPath<Graph> DPath;
   1.101 +    //DPath paths;
   1.102 +
   1.103 +
   1.104 +    Length total_length;
   1.105 +
   1.106 +
   1.107 +  public :
   1.108 +
   1.109 +
   1.110 +    MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   1.111 +      length(_length), capacity(_cap), flow(_G), potential(_G){ }
   1.112 +
   1.113 +    
   1.114 +    ///Runs the algorithm.
   1.115 +
   1.116 +    ///Runs the algorithm.
   1.117 +    ///Returns k if there are at least k edge-disjoint paths from s to t.
   1.118 +    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   1.119 +    ///\todo May be it does make sense to be able to start with a nonzero 
   1.120 +    /// feasible primal-dual solution pair as well.
   1.121 +    int run(Node s, Node t, int k) {
   1.122 +
   1.123 +      //Resetting variables from previous runs
   1.124 +      total_length = 0;
   1.125 +      
   1.126 +      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   1.127 +	flow.set(e,0);
   1.128 +      }
   1.129 +      
   1.130 +      FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   1.131 +	//cout << potential[n]<<endl;
   1.132 +	potential.set(n,0);
   1.133 +      }
   1.134 +      
   1.135 +
   1.136 +      
   1.137 +      //We need a residual graph
   1.138 +      ResGraphType res_graph(G, capacity, flow);
   1.139 +
   1.140 +      //Initialize the copy of the Dijkstra potential to zero
   1.141 +      
   1.142 +      //typename ResGraphType::template NodeMap<Length> potential(res_graph);
   1.143 +
   1.144 +
   1.145 +      ModLengthMap mod_length(res_graph, length, potential);
   1.146 +
   1.147 +      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   1.148 +
   1.149 +      int i;
   1.150 +      for (i=0; i<k; ++i){
   1.151 +	dijkstra.run(s);
   1.152 +	if (!dijkstra.reached(t)){
   1.153 +	  //There are no k paths from s to t
   1.154 +	  break;
   1.155 +	};
   1.156 +	
   1.157 +	{
   1.158 +	  //We have to copy the potential
   1.159 +	  typename ResGraphType::NodeIt n;
   1.160 +	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   1.161 +	      potential[n] += dijkstra.distMap()[n];
   1.162 +	  }
   1.163 +	}
   1.164 +
   1.165 +
   1.166 +	//Augmenting on the sortest path
   1.167 +	Node n=t;
   1.168 +	ResGraphEdge e;
   1.169 +	while (n!=s){
   1.170 +	  e = dijkstra.pred(n);
   1.171 +	  n = dijkstra.predNode(n);
   1.172 +	  res_graph.augment(e,1);
   1.173 +	  //Let's update the total length
   1.174 +	  if (res_graph.forward(e))
   1.175 +	    total_length += length[e];
   1.176 +	  else 
   1.177 +	    total_length -= length[e];	    
   1.178 +	}
   1.179 +
   1.180 +	  
   1.181 +      }
   1.182 +      
   1.183 +
   1.184 +      return i;
   1.185 +    }
   1.186 +
   1.187 +
   1.188 +
   1.189 +
   1.190 +    ///This function gives back the total length of the found paths.
   1.191 +    ///Assumes that \c run() has been run and nothing changed since then.
   1.192 +    Length totalLength(){
   1.193 +      return total_length;
   1.194 +    }
   1.195 +
   1.196 +    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   1.197 +    ///be called before using this function.
   1.198 +    const EdgeIntMap &getFlow() const { return flow;}
   1.199 +
   1.200 +  ///Returns a const reference to the NodeMap \c potential (the dual solution).
   1.201 +    /// \pre \ref run() must be called before using this function.
   1.202 +    const EdgeIntMap &getPotential() const { return potential;}
   1.203 +
   1.204 +    ///This function checks, whether the given solution is optimal
   1.205 +    ///Running after a \c run() should return with true
   1.206 +    ///In this "state of the art" this only check optimality, doesn't bother with feasibility
   1.207 +    ///
   1.208 +    ///\todo Is this OK here?
   1.209 +    bool checkComplementarySlackness(){
   1.210 +      Length mod_pot;
   1.211 +      Length fl_e;
   1.212 +      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   1.213 +	//C^{\Pi}_{i,j}
   1.214 +	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   1.215 +	fl_e = flow[e];
   1.216 +	//	std::cout << fl_e << std::endl;
   1.217 +	if (0<fl_e && fl_e<capacity[e]){
   1.218 +	  if (mod_pot != 0)
   1.219 +	    return false;
   1.220 +	}
   1.221 +	else{
   1.222 +	  if (mod_pot > 0 && fl_e != 0)
   1.223 +	    return false;
   1.224 +	  if (mod_pot < 0 && fl_e != capacity[e])
   1.225 +	    return false;
   1.226 +	}
   1.227 +      }
   1.228 +      return true;
   1.229 +    }
   1.230 +    
   1.231 +    /*
   1.232 +      ///\todo To be implemented later
   1.233 +
   1.234 +    ///This function gives back the \c j-th path in argument p.
   1.235 +    ///Assumes that \c run() has been run and nothing changed since then.
   1.236 +    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   1.237 +    template<typename DirPath>
   1.238 +    void getPath(DirPath& p, int j){
   1.239 +      p.clear();
   1.240 +      typename DirPath::Builder B(p);
   1.241 +      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   1.242 +	  i!=paths[j].end(); ++i ){
   1.243 +	B.pushBack(*i);
   1.244 +      }
   1.245 +
   1.246 +      B.commit();
   1.247 +    }
   1.248 +
   1.249 +    */
   1.250 +
   1.251 +  }; //class MinCostFlows
   1.252 +
   1.253 +  ///@}
   1.254 +
   1.255 +} //namespace hugo
   1.256 +
   1.257 +#endif //HUGO_MINCOSTFLOW_H