lemon/dinitz_sleator_tarjan.h
changeset 2514 57143c09dc20
child 2519 a7376f7ed899
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/dinitz_sleator_tarjan.h	Sat Nov 17 20:58:11 2007 +0000
     1.3 @@ -0,0 +1,762 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_DINITZ_SLEATOR_TARJAN_H
    1.23 +#define LEMON_DINITZ_SLEATOR_TARJAN_H
    1.24 +
    1.25 +/// \file 
    1.26 +/// \ingroup max_flow 
    1.27 +/// \brief Implementation the dynamic tree data structure of Sleator
    1.28 +/// and Tarjan.
    1.29 +
    1.30 +#include <lemon/time_measure.h>
    1.31 +#include <queue>
    1.32 +#include <lemon/graph_utils.h>
    1.33 +#include <lemon/tolerance.h>
    1.34 +#include <lemon/graph_adaptor.h>
    1.35 +#include <lemon/bfs.h>
    1.36 +#include <lemon/edge_set.h>
    1.37 +#include <lemon/dynamic_tree.h>
    1.38 +
    1.39 +#include <vector>
    1.40 +#include <limits>
    1.41 +#include <fstream>
    1.42 +
    1.43 +
    1.44 +namespace lemon {
    1.45 +
    1.46 +  /// \brief Default traits class of DinitzSleatorTarjan class.
    1.47 +  ///
    1.48 +  /// Default traits class of DinitzSleatorTarjan class.
    1.49 +  /// \param _Graph Graph type.
    1.50 +  /// \param _CapacityMap Type of capacity map.
    1.51 +  template <typename _Graph, typename _CapacityMap>
    1.52 +  struct DinitzSleatorTarjanDefaultTraits {
    1.53 +
    1.54 +    /// \brief The graph type the algorithm runs on. 
    1.55 +    typedef _Graph Graph;
    1.56 +
    1.57 +    /// \brief The type of the map that stores the edge capacities.
    1.58 +    ///
    1.59 +    /// The type of the map that stores the edge capacities.
    1.60 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    1.61 +    typedef _CapacityMap CapacityMap;
    1.62 +
    1.63 +    /// \brief The type of the length of the edges.
    1.64 +    typedef typename CapacityMap::Value Value;
    1.65 +
    1.66 +    /// \brief The map type that stores the flow values.
    1.67 +    ///
    1.68 +    /// The map type that stores the flow values. 
    1.69 +    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    1.70 +    typedef typename Graph::template EdgeMap<Value> FlowMap;
    1.71 +
    1.72 +    /// \brief Instantiates a FlowMap.
    1.73 +    ///
    1.74 +    /// This function instantiates a \ref FlowMap. 
    1.75 +    /// \param graph The graph, to which we would like to define the flow map.
    1.76 +    static FlowMap* createFlowMap(const Graph& graph) {
    1.77 +      return new FlowMap(graph);
    1.78 +    }
    1.79 +
    1.80 +    /// \brief The tolerance used by the algorithm
    1.81 +    ///
    1.82 +    /// The tolerance used by the algorithm to handle inexact computation.
    1.83 +    typedef Tolerance<Value> Tolerance;
    1.84 +
    1.85 +  };
    1.86 +
    1.87 +  /// \ingroup max_flow
    1.88 +  ///
    1.89 +  /// \brief Dinitz-Sleator-Tarjan algorithms class.
    1.90 +  ///
    1.91 +  /// This class provides an implementation of the \e
    1.92 +  /// Dinitz-Sleator-Tarjan \e algorithm producing a flow of maximum
    1.93 +  /// value in a directed graph. The DinitzSleatorTarjan algorithm is
    1.94 +  /// the fastest known max flow algorithms wich using blocking
    1.95 +  /// flow. It is an improvement of the Dinitz algorithm by using the
    1.96 +  /// \ref DynamicTree "dynamic tree" data structure of Sleator and
    1.97 +  /// Tarjan.
    1.98 +  ///
    1.99 +  /// This blocking flow algorithms builds a layered graph according
   1.100 +  /// to \ref Bfs "breadth-first search" distance from the target node
   1.101 +  /// in the reversed residual graph. The layered graph contains each
   1.102 +  /// residual edge which steps one level down. After that the
   1.103 +  /// algorithm constructs a blocking flow on the layered graph and
   1.104 +  /// augments the overall flow with it. The number of the levels in
   1.105 +  /// the layered graph is strictly increasing in each augmenting
   1.106 +  /// phase therefore the number of the augmentings is at most
   1.107 +  /// \f$n-1\f$.  The length of each phase is at most
   1.108 +  /// \f$O(m\log(n))\f$, that the overall time complexity is
   1.109 +  /// \f$O(nm\log(n))\f$.
   1.110 +  ///
   1.111 +  /// \param _Graph The directed graph type the algorithm runs on.
   1.112 +  /// \param _CapacityMap The capacity map type.
   1.113 +  /// \param _Traits Traits class to set various data types used by
   1.114 +  /// the algorithm.  The default traits class is \ref
   1.115 +  /// DinitzSleatorTarjanDefaultTraits.  See \ref
   1.116 +  /// DinitzSleatorTarjanDefaultTraits for the documentation of a
   1.117 +  /// Dinitz-Sleator-Tarjan traits class.
   1.118 +  ///
   1.119 +  /// \author Tamas Hamori and Balazs Dezso
   1.120 +#ifdef DOXYGEN
   1.121 +  template <typename _Graph, typename _CapacityMap, typename _Traits>
   1.122 +#else
   1.123 +  template <typename _Graph, 
   1.124 +	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
   1.125 +	    typename _Traits = 
   1.126 +	    DinitzSleatorTarjanDefaultTraits<_Graph, _CapacityMap> >
   1.127 +#endif
   1.128 +  class DinitzSleatorTarjan {
   1.129 +  public:
   1.130 +
   1.131 +    typedef _Traits Traits;
   1.132 +    typedef typename Traits::Graph Graph;
   1.133 +    typedef typename Traits::CapacityMap CapacityMap;
   1.134 +    typedef typename Traits::Value Value; 
   1.135 +
   1.136 +    typedef typename Traits::FlowMap FlowMap;
   1.137 +    typedef typename Traits::Tolerance Tolerance;
   1.138 +
   1.139 +
   1.140 +  private:
   1.141 +
   1.142 +    GRAPH_TYPEDEFS(typename Graph);
   1.143 +
   1.144 +
   1.145 +    typedef typename Graph::template NodeMap<int> LevelMap;
   1.146 +    typedef typename Graph::template NodeMap<int> IntNodeMap;
   1.147 +    typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
   1.148 +    typedef DynamicTree<Value, IntNodeMap, Tolerance, false> DynTree;
   1.149 +
   1.150 +  private:
   1.151 +    
   1.152 +    const Graph& _graph;
   1.153 +    const CapacityMap* _capacity;
   1.154 +
   1.155 +    Node _source, _target;
   1.156 +
   1.157 +    FlowMap* _flow;
   1.158 +    bool _local_flow;
   1.159 +
   1.160 +    IntNodeMap* _level;
   1.161 +    EdgeNodeMap* _dt_edges;
   1.162 +    
   1.163 +    IntNodeMap* _dt_index;
   1.164 +    DynTree* _dt;
   1.165 +
   1.166 +    Tolerance _tolerance;
   1.167 +    
   1.168 +    Value _flow_value;
   1.169 +    Value _max_value;
   1.170 +
   1.171 +
   1.172 +  public:
   1.173 +
   1.174 +    typedef DinitzSleatorTarjan Create;
   1.175 +
   1.176 +    ///\name Named template parameters
   1.177 +
   1.178 +    ///@{
   1.179 +
   1.180 +    template <typename _FlowMap>
   1.181 +    struct DefFlowMapTraits : public Traits {
   1.182 +      typedef _FlowMap FlowMap;
   1.183 +      static FlowMap *createFlowMap(const Graph&) {
   1.184 +	throw UninitializedParameter();
   1.185 +      }
   1.186 +    };
   1.187 +
   1.188 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.189 +    /// FlowMap type
   1.190 +    ///
   1.191 +    /// \ref named-templ-param "Named parameter" for setting FlowMap
   1.192 +    /// type
   1.193 +    template <typename _FlowMap>
   1.194 +    struct DefFlowMap 
   1.195 +      : public DinitzSleatorTarjan<Graph, CapacityMap, 
   1.196 +			      DefFlowMapTraits<_FlowMap> > {
   1.197 +      typedef DinitzSleatorTarjan<Graph, CapacityMap, 
   1.198 +			     DefFlowMapTraits<_FlowMap> > Create;
   1.199 +    };
   1.200 +
   1.201 +    template <typename _Elevator>
   1.202 +    struct DefElevatorTraits : public Traits {
   1.203 +      typedef _Elevator Elevator;
   1.204 +      static Elevator *createElevator(const Graph&, int) {
   1.205 +	throw UninitializedParameter();
   1.206 +      }
   1.207 +    };
   1.208 +
   1.209 +    /// @}
   1.210 +
   1.211 +    /// \brief \ref Exception for the case when the source equals the target.
   1.212 +    ///
   1.213 +    /// \ref Exception for the case when the source equals the target.
   1.214 +    ///
   1.215 +    class InvalidArgument : public lemon::LogicError {
   1.216 +    public:
   1.217 +      virtual const char* what() const throw() {
   1.218 +	return "lemon::DinitzSleatorTarjan::InvalidArgument";
   1.219 +      }
   1.220 +    };
   1.221 +
   1.222 +    /// \brief The constructor of the class.
   1.223 +    ///
   1.224 +    /// The constructor of the class. 
   1.225 +    /// \param graph The directed graph the algorithm runs on. 
   1.226 +    /// \param capacity The capacity of the edges. 
   1.227 +    /// \param source The source node.
   1.228 +    /// \param target The target node.
   1.229 +    DinitzSleatorTarjan(const Graph& graph, const CapacityMap& capacity,
   1.230 +			Node source, Node target)
   1.231 +      : _graph(graph), _capacity(&capacity),
   1.232 +	_source(source), _target(target),
   1.233 +	_flow(0), _local_flow(false),
   1.234 +	_level(0), _dt_edges(0),
   1.235 +	_dt_index(0), _dt(0),
   1.236 +	_tolerance(), _flow_value(), _max_value()
   1.237 +    {
   1.238 +      if (_source == _target) {
   1.239 +	throw InvalidArgument();
   1.240 +      }
   1.241 +    }
   1.242 +
   1.243 +    /// \brief Destrcutor.
   1.244 +    ///
   1.245 +    /// Destructor.
   1.246 +    ~DinitzSleatorTarjan() {
   1.247 +      destroyStructures();
   1.248 +    }
   1.249 +
   1.250 +    /// \brief Sets the capacity map.
   1.251 +    ///
   1.252 +    /// Sets the capacity map.
   1.253 +    /// \return \c (*this)
   1.254 +    DinitzSleatorTarjan& capacityMap(const CapacityMap& map) {
   1.255 +      _capacity = &map;
   1.256 +      return *this;
   1.257 +    }
   1.258 +
   1.259 +    /// \brief Sets the flow map.
   1.260 +    ///
   1.261 +    /// Sets the flow map.
   1.262 +    /// \return \c (*this)
   1.263 +    DinitzSleatorTarjan& flowMap(FlowMap& map) {
   1.264 +      if (_local_flow) {
   1.265 +	delete _flow;
   1.266 +	_local_flow = false;
   1.267 +      }
   1.268 +      _flow = &map;
   1.269 +      return *this;
   1.270 +    }
   1.271 +
   1.272 +    /// \brief Returns the flow map.
   1.273 +    ///
   1.274 +    /// \return The flow map.
   1.275 +    const FlowMap& flowMap() {
   1.276 +      return *_flow;
   1.277 +    }
   1.278 +
   1.279 +    /// \brief Sets the source node.
   1.280 +    ///
   1.281 +    /// Sets the source node.
   1.282 +    /// \return \c (*this)
   1.283 +    DinitzSleatorTarjan& source(const Node& node) {
   1.284 +      _source = node;
   1.285 +      return *this;
   1.286 +    }
   1.287 +
   1.288 +    /// \brief Sets the target node.
   1.289 +    ///
   1.290 +    /// Sets the target node.
   1.291 +    /// \return \c (*this)
   1.292 +    DinitzSleatorTarjan& target(const Node& node) {
   1.293 +      _target = node;
   1.294 +      return *this;
   1.295 +    }
   1.296 +
   1.297 +    /// \brief Sets the tolerance used by algorithm.
   1.298 +    ///
   1.299 +    /// Sets the tolerance used by algorithm.
   1.300 +    DinitzSleatorTarjan& tolerance(const Tolerance& tolerance) const {
   1.301 +      _tolerance = tolerance;
   1.302 +      if (_dt) {
   1.303 +	_dt.tolerance(_tolerance);
   1.304 +      }
   1.305 +      return *this;
   1.306 +    } 
   1.307 +
   1.308 +    /// \brief Returns the tolerance used by algorithm.
   1.309 +    ///
   1.310 +    /// Returns the tolerance used by algorithm.
   1.311 +    const Tolerance& tolerance() const {
   1.312 +      return tolerance;
   1.313 +    } 
   1.314 +
   1.315 +  private:
   1.316 +        
   1.317 +    void createStructures() {
   1.318 +      if (!_flow) {
   1.319 +	_flow = Traits::createFlowMap(_graph);
   1.320 +	_local_flow = true;
   1.321 +      }
   1.322 +      if (!_level) {
   1.323 +	_level = new LevelMap(_graph);
   1.324 +      }
   1.325 +      if (!_dt_index && !_dt) {
   1.326 +	_dt_index = new IntNodeMap(_graph);
   1.327 +	_dt = new DynTree(*_dt_index, _tolerance);
   1.328 +      }
   1.329 +      if (!_dt_edges) {
   1.330 +	_dt_edges = new EdgeNodeMap(_graph);
   1.331 +      }
   1.332 +      _max_value = _dt->maxValue();
   1.333 +    }
   1.334 +
   1.335 +    void destroyStructures() {
   1.336 +      if (_local_flow) {
   1.337 +	delete _flow;
   1.338 +      }
   1.339 +      if (_level) {
   1.340 +	delete _level;
   1.341 +      }
   1.342 +      if (_dt) {
   1.343 +	delete _dt;
   1.344 +      }
   1.345 +      if (_dt_index) {
   1.346 +	delete _dt_index;
   1.347 +      }
   1.348 +      if (_dt_edges) {
   1.349 +	delete _dt_edges;
   1.350 +      }
   1.351 +    }
   1.352 +
   1.353 +    bool createLayeredGraph() {
   1.354 +
   1.355 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.356 +	_level->set(n, -2);
   1.357 +      }
   1.358 +      
   1.359 +      int level = 0;
   1.360 +
   1.361 +      std::vector<Node> queue;
   1.362 +      queue.push_back(_target);
   1.363 +      _level->set(_target, level);
   1.364 +      
   1.365 +      while ((*_level)[_source] == -2 && !queue.empty()) {
   1.366 +	std::vector<Node> nqueue;
   1.367 +	++level;
   1.368 +	
   1.369 +	for (int i = 0; i < int(queue.size()); ++i) {
   1.370 +	  Node n = queue[i];
   1.371 +	  
   1.372 +	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.373 +	    Node v = _graph.target(e);
   1.374 +	    if ((*_level)[v] != -2) continue;
   1.375 +	    Value rem = (*_flow)[e];
   1.376 +	    if (!_tolerance.positive(rem)) continue;
   1.377 +	    _level->set(v, level);
   1.378 +	    nqueue.push_back(v);
   1.379 +	  }
   1.380 +
   1.381 +	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.382 +	    Node v = _graph.source(e);
   1.383 +	    if ((*_level)[v] != -2) continue;
   1.384 +	    Value rem = (*_capacity)[e] - (*_flow)[e];
   1.385 +	    if (!_tolerance.positive(rem)) continue;
   1.386 +	    _level->set(v, level);
   1.387 +	    nqueue.push_back(v);
   1.388 +	  }
   1.389 +
   1.390 +	}
   1.391 +	queue.swap(nqueue);
   1.392 +      }
   1.393 +      
   1.394 +      return (*_level)[_source] != -2;
   1.395 +    }
   1.396 +
   1.397 +    void initEdges() {
   1.398 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.399 +	_graph.firstOut((*_dt_edges)[n], n);
   1.400 +      }
   1.401 +    }
   1.402 +        
   1.403 +    
   1.404 +    void augmentPath() {
   1.405 +      Value rem;
   1.406 +      Node n = _dt->findCost(_source, rem);
   1.407 +      _flow_value += rem;
   1.408 +      _dt->addCost(_source, - rem);
   1.409 +
   1.410 +      _dt->cut(n);
   1.411 +      _dt->addCost(n, _max_value);
   1.412 +
   1.413 +      Edge e = (*_dt_edges)[n];
   1.414 +      if (_graph.source(e) == n) {
   1.415 +	_flow->set(e, (*_capacity)[e]);
   1.416 +	
   1.417 +	_graph.nextOut(e);
   1.418 +	if (e == INVALID) {
   1.419 +	  _graph.firstIn(e, n);
   1.420 +	}
   1.421 +      } else {
   1.422 +	_flow->set(e, 0);
   1.423 +	_graph.nextIn(e);
   1.424 +      }
   1.425 +      _dt_edges->set(n, e);
   1.426 +
   1.427 +    }
   1.428 +
   1.429 +    bool advance(Node n) {
   1.430 +      Edge e = (*_dt_edges)[n];
   1.431 +      if (e == INVALID) return false;
   1.432 +
   1.433 +      Node u;
   1.434 +      Value rem;      
   1.435 +      if (_graph.source(e) == n) {
   1.436 +	u = _graph.target(e);
   1.437 +	while ((*_level)[n] != (*_level)[u] + 1 || 
   1.438 +	       !_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   1.439 +	  _graph.nextOut(e);
   1.440 +	  if (e == INVALID) break;
   1.441 +	  u = _graph.target(e);
   1.442 +	}
   1.443 +	if (e != INVALID) {
   1.444 +	  rem = (*_capacity)[e] - (*_flow)[e];
   1.445 +	} else {
   1.446 +	  _graph.firstIn(e, n);
   1.447 +	  if (e == INVALID) {
   1.448 +	    _dt_edges->set(n, INVALID);
   1.449 +	    return false;
   1.450 +	  }
   1.451 +	  u = _graph.source(e);
   1.452 +	  while ((*_level)[n] != (*_level)[u] + 1 ||
   1.453 +		 !_tolerance.positive((*_flow)[e])) {
   1.454 +	    _graph.nextIn(e);
   1.455 +	    if (e == INVALID) {
   1.456 +	      _dt_edges->set(n, INVALID);
   1.457 +	      return false;
   1.458 +	    }
   1.459 +	    u = _graph.source(e);
   1.460 +	  }
   1.461 +	  rem = (*_flow)[e];
   1.462 +	}
   1.463 +      } else {
   1.464 +	u = _graph.source(e);
   1.465 +	while ((*_level)[n] != (*_level)[u] + 1 ||
   1.466 +	       !_tolerance.positive((*_flow)[e])) {
   1.467 +	  _graph.nextIn(e);
   1.468 +	  if (e == INVALID) {
   1.469 +	    _dt_edges->set(n, INVALID);
   1.470 +	    return false;
   1.471 +	  }
   1.472 +	  u = _graph.source(e);
   1.473 +	}
   1.474 +	rem = (*_flow)[e];
   1.475 +      }
   1.476 +
   1.477 +      _dt->addCost(n, - std::numeric_limits<Value>::max());
   1.478 +      _dt->addCost(n, rem);
   1.479 +      _dt->link(n, u);
   1.480 +      _dt_edges->set(n, e);
   1.481 +      return true;
   1.482 +    }
   1.483 +
   1.484 +    void retreat(Node n) {
   1.485 +      _level->set(n, -1);
   1.486 +      
   1.487 +      for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.488 +	Node u = _graph.target(e);
   1.489 +	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
   1.490 +	  Value rem;
   1.491 +	  _dt->findCost(u, rem);
   1.492 +	  _flow->set(e, rem);
   1.493 +	  _dt->cut(u);
   1.494 +	  _dt->addCost(u, - rem);
   1.495 +	  _dt->addCost(u, _max_value);
   1.496 +	}
   1.497 +      }
   1.498 +      for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.499 +	Node u = _graph.source(e);
   1.500 +	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
   1.501 +	  Value rem;
   1.502 +	  _dt->findCost(u, rem);
   1.503 +	  _flow->set(e, (*_capacity)[e] - rem);
   1.504 +	  _dt->cut(u);
   1.505 +	  _dt->addCost(u, - rem);
   1.506 +	  _dt->addCost(u, _max_value);
   1.507 +	}
   1.508 +      }
   1.509 +    }
   1.510 +
   1.511 +    void extractTrees() {
   1.512 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.513 +	
   1.514 +	Node w = _dt->findRoot(n);
   1.515 +      
   1.516 +	while (w != n) {
   1.517 +      
   1.518 +	  Value rem;      
   1.519 +	  Node u = _dt->findCost(n, rem);
   1.520 +
   1.521 +	  _dt->cut(u);
   1.522 +	  _dt->addCost(u, - rem);
   1.523 +	  _dt->addCost(u, _max_value);
   1.524 +	  
   1.525 +	  Edge e = (*_dt_edges)[u];
   1.526 +	  _dt_edges->set(u, INVALID);
   1.527 +	  
   1.528 +	  if (u == _graph.source(e)) {
   1.529 +	    _flow->set(e, (*_capacity)[e] - rem);
   1.530 +	  } else {
   1.531 +	    _flow->set(e, rem);
   1.532 +	  }
   1.533 +	  
   1.534 +	  w = _dt->findRoot(n);
   1.535 +	}      
   1.536 +      }
   1.537 +    }
   1.538 +
   1.539 +
   1.540 +  public:
   1.541 +    
   1.542 +    /// \name Execution control The simplest way to execute the
   1.543 +    /// algorithm is to use the \c run() member functions.
   1.544 +    /// \n
   1.545 +    /// If you need more control on initial solution or
   1.546 +    /// execution then you have to call one \ref init() function and then
   1.547 +    /// the start() or multiple times the \c augment() member function.  
   1.548 +    
   1.549 +    ///@{
   1.550 +
   1.551 +    /// \brief Initializes the algorithm
   1.552 +    /// 
   1.553 +    /// It sets the flow to empty flow.
   1.554 +    void init() {
   1.555 +      createStructures();
   1.556 +
   1.557 +      _dt->clear();
   1.558 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.559 +        _dt->makeTree(n);
   1.560 +        _dt->addCost(n, _max_value);
   1.561 +      }
   1.562 +
   1.563 +      for (EdgeIt it(_graph); it != INVALID; ++it) {
   1.564 +        _flow->set(it, 0);
   1.565 +      }
   1.566 +      _flow_value = 0;
   1.567 +    }
   1.568 +    
   1.569 +    /// \brief Initializes the algorithm
   1.570 +    /// 
   1.571 +    /// Initializes the flow to the \c flowMap. The \c flowMap should
   1.572 +    /// contain a feasible flow, ie. in each node excluding the source
   1.573 +    /// and the target the incoming flow should be equal to the
   1.574 +    /// outgoing flow.
   1.575 +    template <typename FlowMap>
   1.576 +    void flowInit(const FlowMap& flowMap) {
   1.577 +      createStructures();
   1.578 +
   1.579 +      _dt->clear();
   1.580 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.581 +        _dt->makeTree(n);
   1.582 +        _dt->addCost(n, _max_value);
   1.583 +      }
   1.584 +
   1.585 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
   1.586 +	_flow->set(e, flowMap[e]);
   1.587 +      }
   1.588 +      _flow_value = 0;
   1.589 +      for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.590 +        _flow_value += (*_flow)[jt];
   1.591 +      }
   1.592 +      for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.593 +        _flow_value -= (*_flow)[jt];
   1.594 +      }
   1.595 +    }
   1.596 +
   1.597 +    /// \brief Initializes the algorithm
   1.598 +    /// 
   1.599 +    /// Initializes the flow to the \c flowMap. The \c flowMap should
   1.600 +    /// contain a feasible flow, ie. in each node excluding the source
   1.601 +    /// and the target the incoming flow should be equal to the
   1.602 +    /// outgoing flow.  
   1.603 +    /// \return %False when the given flowMap does not contain
   1.604 +    /// feasible flow.
   1.605 +    template <typename FlowMap>
   1.606 +    bool checkedFlowInit(const FlowMap& flowMap) {
   1.607 +      createStructures();
   1.608 +
   1.609 +      _dt->clear();
   1.610 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.611 +        _dt->makeTree(n);
   1.612 +        _dt->addCost(n, _max_value);
   1.613 +      }
   1.614 +
   1.615 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
   1.616 +	_flow->set(e, flowMap[e]);
   1.617 +      }
   1.618 +      for (NodeIt it(_graph); it != INVALID; ++it) {
   1.619 +        if (it == _source || it == _target) continue;
   1.620 +        Value outFlow = 0;
   1.621 +        for (OutEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   1.622 +          outFlow += (*_flow)[jt];
   1.623 +        }
   1.624 +        Value inFlow = 0;
   1.625 +        for (InEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   1.626 +          inFlow += (*_flow)[jt];
   1.627 +        }
   1.628 +        if (_tolerance.different(outFlow, inFlow)) {
   1.629 +          return false;
   1.630 +        }
   1.631 +      }
   1.632 +      for (EdgeIt it(_graph); it != INVALID; ++it) {
   1.633 +        if (_tolerance.less((*_flow)[it], 0)) return false;
   1.634 +        if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
   1.635 +      }
   1.636 +      _flow_value = 0;
   1.637 +      for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.638 +        _flow_value += (*_flow)[jt];
   1.639 +      }
   1.640 +      for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.641 +        _flow_value -= (*_flow)[jt];
   1.642 +      }
   1.643 +      return true;
   1.644 +    }
   1.645 +
   1.646 +    /// \brief Executes the algorithm
   1.647 +    ///
   1.648 +    /// It runs augmenting phases by adding blocking flow until the
   1.649 +    /// optimal solution is reached.
   1.650 +    void start() {
   1.651 +      while (augment());
   1.652 +    }
   1.653 +
   1.654 +    /// \brief Augments the flow with a blocking flow on a layered
   1.655 +    /// graph.
   1.656 +    /// 
   1.657 +    /// This function builds a layered graph and then find a blocking
   1.658 +    /// flow on this graph. The number of the levels in the layered
   1.659 +    /// graph is strictly increasing in each augmenting phase
   1.660 +    /// therefore the number of the augmentings is at most \f$ n-1
   1.661 +    /// \f$.  The length of each phase is at most \f$ O(m \log(n))
   1.662 +    /// \f$, that the overall time complexity is \f$ O(nm \log(n)) \f$.
   1.663 +    /// \return %False when there is not residual path between the
   1.664 +    /// source and the target so the current flow is a feasible and
   1.665 +    /// optimal solution.
   1.666 +    bool augment() {
   1.667 +      Node n;
   1.668 +
   1.669 +      if (createLayeredGraph()) {
   1.670 +	
   1.671 +	Timer bf_timer;
   1.672 +	initEdges();
   1.673 +
   1.674 +	n = _dt->findRoot(_source);
   1.675 +	while (true) {
   1.676 +	  Edge e;
   1.677 +	  if (n == _target) {
   1.678 +	    augmentPath();
   1.679 +	  } else if (!advance(n)) {
   1.680 +	    if (n != _source) {
   1.681 +	      retreat(n);
   1.682 +	    } else {
   1.683 +	      break;
   1.684 +	    }
   1.685 +	  }
   1.686 +	  n = _dt->findRoot(_source);
   1.687 +	}     
   1.688 +	extractTrees();
   1.689 +
   1.690 +	return true;
   1.691 +      } else {
   1.692 +	return false;
   1.693 +      }
   1.694 +    }
   1.695 +    
   1.696 +    /// \brief runs the algorithm.
   1.697 +    /// 
   1.698 +    /// It is just a shorthand for:
   1.699 +    ///
   1.700 +    ///\code 
   1.701 +    /// ek.init();
   1.702 +    /// ek.start();
   1.703 +    ///\endcode
   1.704 +    void run() {
   1.705 +      init();
   1.706 +      start();
   1.707 +    }
   1.708 +
   1.709 +    /// @}
   1.710 +
   1.711 +    /// \name Query Functions
   1.712 +    /// The result of the %Dijkstra algorithm can be obtained using these
   1.713 +    /// functions.\n
   1.714 +    /// Before the use of these functions,
   1.715 +    /// either run() or start() must be called.
   1.716 +    
   1.717 +    ///@{
   1.718 +
   1.719 +    /// \brief Returns the value of the maximum flow.
   1.720 +    ///
   1.721 +    /// Returns the value of the maximum flow by returning the excess
   1.722 +    /// of the target node \c t. This value equals to the value of
   1.723 +    /// the maximum flow already after the first phase.
   1.724 +    Value flowValue() const {
   1.725 +      return _flow_value;
   1.726 +    }
   1.727 +
   1.728 +
   1.729 +    /// \brief Returns the flow on the edge.
   1.730 +    ///
   1.731 +    /// Sets the \c flowMap to the flow on the edges. This method can
   1.732 +    /// be called after the second phase of algorithm.
   1.733 +    Value flow(const Edge& edge) const {
   1.734 +      return (*_flow)[edge];
   1.735 +    }
   1.736 +
   1.737 +    /// \brief Returns true when the node is on the source side of minimum cut.
   1.738 +    ///
   1.739 +
   1.740 +    /// Returns true when the node is on the source side of minimum
   1.741 +    /// cut. This method can be called both after running \ref
   1.742 +    /// startFirstPhase() and \ref startSecondPhase().
   1.743 +    bool minCut(const Node& node) const {
   1.744 +      return (*_level)[node] == -2;
   1.745 +    }
   1.746 +
   1.747 +    /// \brief Returns a minimum value cut.
   1.748 +    ///
   1.749 +    /// Sets \c cut to the characteristic vector of a minimum value cut
   1.750 +    /// It simply calls the minMinCut member.
   1.751 +    /// \retval cut Write node bool map. 
   1.752 +    template <typename CutMap>
   1.753 +    void minCutMap(CutMap& cutMap) const {
   1.754 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.755 +	cutMap.set(n, (*_level)[n] == -2);
   1.756 +      }
   1.757 +      cutMap.set(_source, true);
   1.758 +    }    
   1.759 +
   1.760 +    /// @}
   1.761 +
   1.762 +  };
   1.763 +}
   1.764 +
   1.765 +#endif