lemon/goldberg_tarjan.h
changeset 2514 57143c09dc20
child 2518 4c0a23bd70b5
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/goldberg_tarjan.h	Sat Nov 17 20:58:11 2007 +0000
     1.3 @@ -0,0 +1,1020 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_GOLDBERG_TARJAN_H
    1.23 +#define LEMON_GOLDBERG_TARJAN_H
    1.24 +
    1.25 +#include <vector>
    1.26 +#include <queue>
    1.27 +
    1.28 +#include <lemon/error.h>
    1.29 +#include <lemon/bits/invalid.h>
    1.30 +#include <lemon/tolerance.h>
    1.31 +#include <lemon/maps.h>
    1.32 +#include <lemon/graph_utils.h>
    1.33 +#include <lemon/dynamic_tree.h>
    1.34 +#include <limits>
    1.35 +
    1.36 +/// \file
    1.37 +/// \ingroup max_flow
    1.38 +/// \brief Implementation of the preflow algorithm.
    1.39 +
    1.40 +namespace lemon {
    1.41 +
    1.42 +  /// \brief Default traits class of GoldbergTarjan class.
    1.43 +  ///
    1.44 +  /// Default traits class of GoldbergTarjan class.
    1.45 +  /// \param _Graph Graph type.
    1.46 +  /// \param _CapacityMap Type of capacity map.
    1.47 +  template <typename _Graph, typename _CapacityMap>
    1.48 +  struct GoldbergTarjanDefaultTraits {
    1.49 +
    1.50 +    /// \brief The graph type the algorithm runs on. 
    1.51 +    typedef _Graph Graph;
    1.52 +
    1.53 +    /// \brief The type of the map that stores the edge capacities.
    1.54 +    ///
    1.55 +    /// The type of the map that stores the edge capacities.
    1.56 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    1.57 +    typedef _CapacityMap CapacityMap;
    1.58 +
    1.59 +    /// \brief The type of the length of the edges.
    1.60 +    typedef typename CapacityMap::Value Value;
    1.61 +
    1.62 +    /// \brief The map type that stores the flow values.
    1.63 +    ///
    1.64 +    /// The map type that stores the flow values. 
    1.65 +    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    1.66 +    typedef typename Graph::template EdgeMap<Value> FlowMap;
    1.67 +
    1.68 +    /// \brief Instantiates a FlowMap.
    1.69 +    ///
    1.70 +    /// This function instantiates a \ref FlowMap. 
    1.71 +    /// \param graph The graph, to which we would like to define the flow map.
    1.72 +    static FlowMap* createFlowMap(const Graph& graph) {
    1.73 +      return new FlowMap(graph);
    1.74 +    }
    1.75 +
    1.76 +    /// \brief The eleavator type used by GoldbergTarjan algorithm.
    1.77 +    /// 
    1.78 +    /// The elevator type used by GoldbergTarjan algorithm.
    1.79 +    ///
    1.80 +    /// \sa Elevator
    1.81 +    /// \sa LinkedElevator
    1.82 +    typedef LinkedElevator<Graph, typename Graph::Node> Elevator;
    1.83 +    
    1.84 +    /// \brief Instantiates an Elevator.
    1.85 +    ///
    1.86 +    /// This function instantiates a \ref Elevator. 
    1.87 +    /// \param graph The graph, to which we would like to define the elevator.
    1.88 +    /// \param max_level The maximum level of the elevator.
    1.89 +    static Elevator* createElevator(const Graph& graph, int max_level) {
    1.90 +      return new Elevator(graph, max_level);
    1.91 +    }
    1.92 +
    1.93 +    /// \brief The tolerance used by the algorithm
    1.94 +    ///
    1.95 +    /// The tolerance used by the algorithm to handle inexact computation.
    1.96 +    typedef Tolerance<Value> Tolerance;
    1.97 +
    1.98 +  };
    1.99 +
   1.100 +  /// \ingroup max_flow
   1.101 +  /// \brief Goldberg-Tarjan algorithms class.
   1.102 +  ///
   1.103 +  /// This class provides an implementation of the \e GoldbergTarjan
   1.104 +  /// \e algorithm producing a flow of maximum value in a directed
   1.105 +  /// graph. The GoldbergTarjan algorithm is a theoretical improvement
   1.106 +  /// of the Goldberg's \ref Preflow "preflow" algorithm by using the \ref
   1.107 +  /// DynamicTree "dynamic tree" data structure of Sleator and Tarjan.
   1.108 +  /// 
   1.109 +  /// The original preflow algorithm with \e "highest label" or \e
   1.110 +  /// FIFO heuristic has \f$O(n^3)\f$ time complexity. The current
   1.111 +  /// algorithm improved this complexity to
   1.112 +  /// \f$O(nm\log(\frac{n^2}{m}))\f$. The algorithm builds limited
   1.113 +  /// size dynamic trees on the residual graph, which can be used to
   1.114 +  /// make multilevel push operations and gives a better bound on the
   1.115 +  /// number of non-saturating pushes.
   1.116 +  ///
   1.117 +  /// \param Graph The directed graph type the algorithm runs on.
   1.118 +  /// \param CapacityMap The capacity map type.
   1.119 +  /// \param _Traits Traits class to set various data types used by
   1.120 +  /// the algorithm.  The default traits class is \ref
   1.121 +  /// GoldbergTarjanDefaultTraits.  See \ref
   1.122 +  /// GoldbergTarjanDefaultTraits for the documentation of a
   1.123 +  /// Goldberg-Tarjan traits class.
   1.124 +  ///
   1.125 +  /// \author Tamas Hamori and Balazs Dezso
   1.126 +#ifdef DOXYGEN
   1.127 +  template <typename _Graph, typename _CapacityMap, typename _Traits> 
   1.128 +#else
   1.129 +  template <typename _Graph,
   1.130 +	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
   1.131 +            typename _Traits = 
   1.132 +	    GoldbergTarjanDefaultTraits<_Graph, _CapacityMap> >
   1.133 +#endif
   1.134 +  class GoldbergTarjan {
   1.135 +  public:
   1.136 +
   1.137 +    typedef _Traits Traits;
   1.138 +    typedef typename Traits::Graph Graph;
   1.139 +    typedef typename Traits::CapacityMap CapacityMap;
   1.140 +    typedef typename Traits::Value Value; 
   1.141 +
   1.142 +    typedef typename Traits::FlowMap FlowMap;
   1.143 +    typedef typename Traits::Elevator Elevator;
   1.144 +    typedef typename Traits::Tolerance Tolerance;
   1.145 +    
   1.146 +  protected:
   1.147 +
   1.148 +    GRAPH_TYPEDEFS(typename Graph);
   1.149 +
   1.150 +    typedef typename Graph::template NodeMap<Node> NodeNodeMap;
   1.151 +    typedef typename Graph::template NodeMap<int> IntNodeMap;
   1.152 +
   1.153 +    typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
   1.154 +    typedef typename Graph::template EdgeMap<Edge> EdgeEdgeMap;
   1.155 +
   1.156 +    typedef typename std::vector<Node> VecNode;
   1.157 + 
   1.158 +    typedef DynamicTree<Value,IntNodeMap,Tolerance> DynTree;
   1.159 +
   1.160 +    const Graph& _graph;
   1.161 +    const CapacityMap* _capacity;
   1.162 +    int _node_num; //the number of nodes of G
   1.163 +
   1.164 +    Node _source;
   1.165 +    Node _target;
   1.166 +
   1.167 +    FlowMap* _flow;
   1.168 +    bool _local_flow;
   1.169 +
   1.170 +    Elevator* _level;
   1.171 +    bool _local_level;
   1.172 +
   1.173 +    typedef typename Graph::template NodeMap<Value> ExcessMap;
   1.174 +    ExcessMap* _excess;
   1.175 +    
   1.176 +    Tolerance _tolerance;
   1.177 +
   1.178 +    bool _phase;
   1.179 +
   1.180 +    // constant for treesize
   1.181 +    static const double _tree_bound = 2;
   1.182 +    int _max_tree_size;
   1.183 +    
   1.184 +    //tags for the dynamic tree
   1.185 +    DynTree *_dt; 
   1.186 +    //datastructure of dyanamic tree
   1.187 +    IntNodeMap *_dt_index;
   1.188 +    //datastrucure for solution of the communication between the two class
   1.189 +    EdgeNodeMap *_dt_edges; 
   1.190 +    //nodeMap for storing the outgoing edge from the node in the tree  
   1.191 +
   1.192 +    //max of the type Value
   1.193 +    const Value _max_value;
   1.194 +            
   1.195 +  public:
   1.196 +
   1.197 +    typedef GoldbergTarjan Create;
   1.198 +
   1.199 +    ///\name Named template parameters
   1.200 +
   1.201 +    ///@{
   1.202 +
   1.203 +    template <typename _FlowMap>
   1.204 +    struct DefFlowMapTraits : public Traits {
   1.205 +      typedef _FlowMap FlowMap;
   1.206 +      static FlowMap *createFlowMap(const Graph&) {
   1.207 +	throw UninitializedParameter();
   1.208 +      }
   1.209 +    };
   1.210 +
   1.211 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.212 +    /// FlowMap type
   1.213 +    ///
   1.214 +    /// \ref named-templ-param "Named parameter" for setting FlowMap
   1.215 +    /// type
   1.216 +    template <typename _FlowMap>
   1.217 +    struct DefFlowMap 
   1.218 +      : public GoldbergTarjan<Graph, CapacityMap, 
   1.219 +			      DefFlowMapTraits<_FlowMap> > {
   1.220 +      typedef GoldbergTarjan<Graph, CapacityMap, 
   1.221 +			     DefFlowMapTraits<_FlowMap> > Create;
   1.222 +    };
   1.223 +
   1.224 +    template <typename _Elevator>
   1.225 +    struct DefElevatorTraits : public Traits {
   1.226 +      typedef _Elevator Elevator;
   1.227 +      static Elevator *createElevator(const Graph&, int) {
   1.228 +	throw UninitializedParameter();
   1.229 +      }
   1.230 +    };
   1.231 +
   1.232 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.233 +    /// Elevator type
   1.234 +    ///
   1.235 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.236 +    /// type
   1.237 +    template <typename _Elevator>
   1.238 +    struct DefElevator 
   1.239 +      : public GoldbergTarjan<Graph, CapacityMap, 
   1.240 +			      DefElevatorTraits<_Elevator> > {
   1.241 +      typedef GoldbergTarjan<Graph, CapacityMap, 
   1.242 +			     DefElevatorTraits<_Elevator> > Create;
   1.243 +    };
   1.244 +
   1.245 +    template <typename _Elevator>
   1.246 +    struct DefStandardElevatorTraits : public Traits {
   1.247 +      typedef _Elevator Elevator;
   1.248 +      static Elevator *createElevator(const Graph& graph, int max_level) {
   1.249 +	return new Elevator(graph, max_level);
   1.250 +      }
   1.251 +    };
   1.252 +
   1.253 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.254 +    /// Elevator type
   1.255 +    ///
   1.256 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.257 +    /// type. The Elevator should be standard constructor interface, ie.
   1.258 +    /// the graph and the maximum level should be passed to it.
   1.259 +    template <typename _Elevator>
   1.260 +    struct DefStandardElevator 
   1.261 +      : public GoldbergTarjan<Graph, CapacityMap, 
   1.262 +			      DefStandardElevatorTraits<_Elevator> > {
   1.263 +      typedef GoldbergTarjan<Graph, CapacityMap, 
   1.264 +			     DefStandardElevatorTraits<_Elevator> > Create;
   1.265 +    };    
   1.266 +
   1.267 +
   1.268 +    ///\ref Exception for the case when s=t.
   1.269 +
   1.270 +    ///\ref Exception for the case when the source equals the target.
   1.271 +    class InvalidArgument : public lemon::LogicError {
   1.272 +    public:
   1.273 +      virtual const char* what() const throw() {
   1.274 +	return "lemon::GoldbergTarjan::InvalidArgument";
   1.275 +      }
   1.276 +    };
   1.277 +
   1.278 +  public: 
   1.279 +
   1.280 +    /// \brief The constructor of the class.
   1.281 +    ///
   1.282 +    /// The constructor of the class. 
   1.283 +    /// \param graph The directed graph the algorithm runs on. 
   1.284 +    /// \param capacity The capacity of the edges. 
   1.285 +    /// \param source The source node.
   1.286 +    /// \param target The target node.
   1.287 +    /// Except the graph, all of these parameters can be reset by
   1.288 +    /// calling \ref source, \ref target, \ref capacityMap and \ref
   1.289 +    /// flowMap, resp.
   1.290 +    GoldbergTarjan(const Graph& graph, const CapacityMap& capacity,
   1.291 +		   Node source, Node target) 
   1.292 +      : _graph(graph), _capacity(&capacity), 
   1.293 +	_node_num(), _source(source), _target(target),
   1.294 +	_flow(0), _local_flow(false),
   1.295 +	_level(0), _local_level(false),
   1.296 +	_excess(0), _tolerance(), 
   1.297 +	_phase(), _max_tree_size(),
   1.298 +	_dt(0), _dt_index(0), _dt_edges(0), 
   1.299 +	_max_value(std::numeric_limits<Value>::max()) { 
   1.300 +      if (_source == _target) throw InvalidArgument();
   1.301 +    }
   1.302 +
   1.303 +    /// \brief Destrcutor.
   1.304 +    ///
   1.305 +    /// Destructor.
   1.306 +    ~GoldbergTarjan() {
   1.307 +      destroyStructures();
   1.308 +    }
   1.309 +    
   1.310 +    /// \brief Sets the capacity map.
   1.311 +    ///
   1.312 +    /// Sets the capacity map.
   1.313 +    /// \return \c (*this)
   1.314 +    GoldbergTarjan& capacityMap(const CapacityMap& map) {
   1.315 +      _capacity = &map;
   1.316 +      return *this;
   1.317 +    }
   1.318 +
   1.319 +    /// \brief Sets the flow map.
   1.320 +    ///
   1.321 +    /// Sets the flow map.
   1.322 +    /// \return \c (*this)
   1.323 +    GoldbergTarjan& flowMap(FlowMap& map) {
   1.324 +      if (_local_flow) {
   1.325 +	delete _flow;
   1.326 +	_local_flow = false;
   1.327 +      }
   1.328 +      _flow = &map;
   1.329 +      return *this;
   1.330 +    }
   1.331 +
   1.332 +    /// \brief Returns the flow map.
   1.333 +    ///
   1.334 +    /// \return The flow map.
   1.335 +    const FlowMap& flowMap() {
   1.336 +      return *_flow;
   1.337 +    }
   1.338 +
   1.339 +    /// \brief Sets the elevator.
   1.340 +    ///
   1.341 +    /// Sets the elevator.
   1.342 +    /// \return \c (*this)
   1.343 +    GoldbergTarjan& elevator(Elevator& elevator) {
   1.344 +      if (_local_level) {
   1.345 +	delete _level;
   1.346 +	_local_level = false;
   1.347 +      }
   1.348 +      _level = &elevator;
   1.349 +      return *this;
   1.350 +    }
   1.351 +
   1.352 +    /// \brief Returns the elevator.
   1.353 +    ///
   1.354 +    /// \return The elevator.
   1.355 +    const Elevator& elevator() {
   1.356 +      return *_level;
   1.357 +    }
   1.358 +
   1.359 +    /// \brief Sets the source node.
   1.360 +    ///
   1.361 +    /// Sets the source node.
   1.362 +    /// \return \c (*this)
   1.363 +    GoldbergTarjan& source(const Node& node) {
   1.364 +      _source = node;
   1.365 +      return *this;
   1.366 +    }
   1.367 +
   1.368 +    /// \brief Sets the target node.
   1.369 +    ///
   1.370 +    /// Sets the target node.
   1.371 +    /// \return \c (*this)
   1.372 +    GoldbergTarjan& target(const Node& node) {
   1.373 +      _target = node;
   1.374 +      return *this;
   1.375 +    }
   1.376 + 
   1.377 +    /// \brief Sets the tolerance used by algorithm.
   1.378 +    ///
   1.379 +    /// Sets the tolerance used by algorithm.
   1.380 +    GoldbergTarjan& tolerance(const Tolerance& tolerance) const {
   1.381 +      _tolerance = tolerance;
   1.382 +      if (_dt) {
   1.383 +	_dt->tolerance(_tolerance);
   1.384 +      }
   1.385 +      return *this;
   1.386 +    } 
   1.387 +
   1.388 +    /// \brief Returns the tolerance used by algorithm.
   1.389 +    ///
   1.390 +    /// Returns the tolerance used by algorithm.
   1.391 +    const Tolerance& tolerance() const {
   1.392 +      return tolerance;
   1.393 +    } 
   1.394 +
   1.395 +         
   1.396 +  private:
   1.397 +    
   1.398 +    void createStructures() {
   1.399 +      _node_num = countNodes(_graph);
   1.400 +
   1.401 +      _max_tree_size = (double(_node_num) * double(_node_num)) / 
   1.402 +	double(countEdges(_graph));
   1.403 +
   1.404 +      if (!_flow) {
   1.405 +	_flow = Traits::createFlowMap(_graph);
   1.406 +	_local_flow = true;
   1.407 +      }
   1.408 +      if (!_level) {
   1.409 +	_level = Traits::createElevator(_graph, _node_num);
   1.410 +	_local_level = true;
   1.411 +      }
   1.412 +      if (!_excess) {
   1.413 +	_excess = new ExcessMap(_graph);
   1.414 +      }
   1.415 +      if (!_dt_index && !_dt) {
   1.416 +	_dt_index = new IntNodeMap(_graph);
   1.417 +	_dt = new DynTree(*_dt_index, _tolerance);
   1.418 +      }
   1.419 +      if (!_dt_edges) {
   1.420 +	_dt_edges = new EdgeNodeMap(_graph);
   1.421 +      }
   1.422 +    }
   1.423 +
   1.424 +    void destroyStructures() {
   1.425 +      if (_local_flow) {
   1.426 +	delete _flow;
   1.427 +      }
   1.428 +      if (_local_level) {
   1.429 +	delete _level;
   1.430 +      }
   1.431 +      if (_excess) {
   1.432 +	delete _excess;
   1.433 +      }
   1.434 +      if (_dt) {
   1.435 +	delete _dt;
   1.436 +      }
   1.437 +      if (_dt_index) {
   1.438 +	delete _dt_index;
   1.439 +      }
   1.440 +      if (_dt_edges) {
   1.441 +	delete _dt_edges;
   1.442 +      }
   1.443 +    }
   1.444 +
   1.445 +    bool sendOut(Node n, Value& excess) {
   1.446 +
   1.447 +      Node w = _dt->findRoot(n);
   1.448 +      
   1.449 +      while (w != n) {
   1.450 +      
   1.451 +	Value rem;      
   1.452 +	Node u = _dt->findCost(n, rem);
   1.453 +
   1.454 +        if (_tolerance.positive(rem) && !_level->active(w) && w != _target) {
   1.455 +	  _level->activate(w);
   1.456 +        }
   1.457 +
   1.458 +        if (!_tolerance.less(rem, excess)) {
   1.459 +	  _dt->addCost(n, - excess);
   1.460 +	  _excess->set(w, (*_excess)[w] + excess);
   1.461 +	  excess = 0;
   1.462 +	  return true;
   1.463 +	}
   1.464 +	
   1.465 +	
   1.466 +        _dt->addCost(n, - rem);
   1.467 +
   1.468 +        excess -= rem;
   1.469 +        _excess->set(w, (*_excess)[w] + rem);
   1.470 +        
   1.471 +	_dt->cut(u);
   1.472 +	_dt->addCost(u, _max_value);
   1.473 +	  
   1.474 +	Edge e = (*_dt_edges)[u];
   1.475 +	_dt_edges->set(u, INVALID);
   1.476 +        
   1.477 +	if (u == _graph.source(e)) {
   1.478 +	  _flow->set(e, (*_capacity)[e]);
   1.479 +	} else {
   1.480 +	  _flow->set(e, 0);
   1.481 +	}           
   1.482 +
   1.483 +        w = _dt->findRoot(n);
   1.484 +      }      
   1.485 +      return false;
   1.486 +    }
   1.487 +
   1.488 +    bool sendIn(Node n, Value& excess) {
   1.489 +
   1.490 +      Node w = _dt->findRoot(n);
   1.491 +      
   1.492 +      while (w != n) {
   1.493 +      
   1.494 +	Value rem;      
   1.495 +	Node u = _dt->findCost(n, rem);
   1.496 +
   1.497 +        if (_tolerance.positive(rem) && !_level->active(w) && w != _source) {
   1.498 +	  _level->activate(w);
   1.499 +        }
   1.500 +
   1.501 +        if (!_tolerance.less(rem, excess)) {
   1.502 +	  _dt->addCost(n, - excess);
   1.503 +	  _excess->set(w, (*_excess)[w] + excess);
   1.504 +	  excess = 0;
   1.505 +	  return true;
   1.506 +	}
   1.507 +	
   1.508 +	
   1.509 +        _dt->addCost(n, - rem);
   1.510 +
   1.511 +        excess -= rem;
   1.512 +        _excess->set(w, (*_excess)[w] + rem);
   1.513 +        
   1.514 +	_dt->cut(u);
   1.515 +	_dt->addCost(u, _max_value);
   1.516 +	  
   1.517 +	Edge e = (*_dt_edges)[u];
   1.518 +	_dt_edges->set(u, INVALID);
   1.519 +        
   1.520 +	if (u == _graph.source(e)) {
   1.521 +	  _flow->set(e, (*_capacity)[e]);
   1.522 +	} else {
   1.523 +	  _flow->set(e, 0);
   1.524 +	}           
   1.525 +
   1.526 +        w = _dt->findRoot(n);
   1.527 +      }      
   1.528 +      return false;
   1.529 +    }
   1.530 +
   1.531 +    void cutChildren(Node n) {
   1.532 +    
   1.533 +      for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.534 +        
   1.535 +        Node v = _graph.target(e);
   1.536 +        
   1.537 +        if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
   1.538 +          _dt->cut(v);
   1.539 +          _dt_edges->set(v, INVALID);
   1.540 +	  Value rem;
   1.541 +          _dt->findCost(v, rem);
   1.542 +          _dt->addCost(v, - rem);
   1.543 +          _dt->addCost(v, _max_value);
   1.544 +          _flow->set(e, rem);
   1.545 +
   1.546 +        }      
   1.547 +      }
   1.548 +
   1.549 +      for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.550 +        
   1.551 +        Node v = _graph.source(e);
   1.552 +        
   1.553 +        if ((*_dt_edges)[v] != INVALID && (*_dt_edges)[v] == e) {
   1.554 +          _dt->cut(v);
   1.555 +          _dt_edges->set(v, INVALID);
   1.556 +	  Value rem;
   1.557 +          _dt->findCost(v, rem);
   1.558 +          _dt->addCost(v, - rem);
   1.559 +          _dt->addCost(v, _max_value);
   1.560 +          _flow->set(e, (*_capacity)[e] - rem);
   1.561 +
   1.562 +        }      
   1.563 +      }
   1.564 +    }
   1.565 +
   1.566 +    void extractTrees() {
   1.567 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.568 +	
   1.569 +	Node w = _dt->findRoot(n);
   1.570 +      
   1.571 +	while (w != n) {
   1.572 +      
   1.573 +	  Value rem;      
   1.574 +	  Node u = _dt->findCost(n, rem);
   1.575 +
   1.576 +	  _dt->cut(u);
   1.577 +	  _dt->addCost(u, - rem);
   1.578 +	  _dt->addCost(u, _max_value);
   1.579 +	  
   1.580 +	  Edge e = (*_dt_edges)[u];
   1.581 +	  _dt_edges->set(u, INVALID);
   1.582 +	  
   1.583 +	  if (u == _graph.source(e)) {
   1.584 +	    _flow->set(e, (*_capacity)[e] - rem);
   1.585 +	  } else {
   1.586 +	    _flow->set(e, rem);
   1.587 +	  }
   1.588 +	  
   1.589 +	  w = _dt->findRoot(n);
   1.590 +	}      
   1.591 +      }
   1.592 +    }
   1.593 +
   1.594 +  public:    
   1.595 +
   1.596 +    /// \name Execution control The simplest way to execute the
   1.597 +    /// algorithm is to use one of the member functions called \c
   1.598 +    /// run().  
   1.599 +    /// \n
   1.600 +    /// If you need more control on initial solution or
   1.601 +    /// execution then you have to call one \ref init() function and then
   1.602 +    /// the startFirstPhase() and if you need the startSecondPhase().  
   1.603 +    
   1.604 +    ///@{
   1.605 +
   1.606 +    /// \brief Initializes the internal data structures.
   1.607 +    ///
   1.608 +    /// Initializes the internal data structures.
   1.609 +    ///
   1.610 +    void init() {
   1.611 +      createStructures();
   1.612 +
   1.613 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.614 +	_excess->set(n, 0);
   1.615 +      }
   1.616 +
   1.617 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
   1.618 +	_flow->set(e, 0);
   1.619 +      }
   1.620 +
   1.621 +      _dt->clear();
   1.622 +      for (NodeIt v(_graph); v != INVALID; ++v) {
   1.623 +        (*_dt_edges)[v] = INVALID;
   1.624 +        _dt->makeTree(v);
   1.625 +        _dt->addCost(v, _max_value);
   1.626 +      }
   1.627 +
   1.628 +      typename Graph::template NodeMap<bool> reached(_graph, false);
   1.629 +
   1.630 +      _level->initStart();
   1.631 +      _level->initAddItem(_target);
   1.632 +
   1.633 +      std::vector<Node> queue;
   1.634 +      reached.set(_source, true);
   1.635 +
   1.636 +      queue.push_back(_target);
   1.637 +      reached.set(_target, true);
   1.638 +      while (!queue.empty()) {
   1.639 +	_level->initNewLevel();
   1.640 +	std::vector<Node> nqueue;
   1.641 +	for (int i = 0; i < int(queue.size()); ++i) {
   1.642 +	  Node n = queue[i];
   1.643 +	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.644 +	    Node u = _graph.source(e);
   1.645 +	    if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   1.646 +	      reached.set(u, true);
   1.647 +	      _level->initAddItem(u);
   1.648 +	      nqueue.push_back(u);
   1.649 +	    }
   1.650 +	  }
   1.651 +	}
   1.652 +	queue.swap(nqueue);
   1.653 +      }
   1.654 +      _level->initFinish();
   1.655 +
   1.656 +      for (OutEdgeIt e(_graph, _source); e != INVALID; ++e) {
   1.657 +	if (_tolerance.positive((*_capacity)[e])) {
   1.658 +	  Node u = _graph.target(e);
   1.659 +	  if ((*_level)[u] == _level->maxLevel()) continue;
   1.660 +	  _flow->set(e, (*_capacity)[e]);
   1.661 +	  _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
   1.662 +	  if (u != _target && !_level->active(u)) {
   1.663 +	    _level->activate(u);
   1.664 +	  }
   1.665 +	}
   1.666 +      }
   1.667 +    }
   1.668 +
   1.669 +    /// \brief Starts the first phase of the preflow algorithm.
   1.670 +    ///
   1.671 +    /// The preflow algorithm consists of two phases, this method runs
   1.672 +    /// the first phase. After the first phase the maximum flow value
   1.673 +    /// and a minimum value cut can already be computed, although a
   1.674 +    /// maximum flow is not yet obtained. So after calling this method
   1.675 +    /// \ref flowValue() returns the value of a maximum flow and \ref
   1.676 +    /// minCut() returns a minimum cut.     
   1.677 +    /// \pre One of the \ref init() functions should be called. 
   1.678 +    void startFirstPhase() {
   1.679 +      _phase = true;
   1.680 +      Node n;
   1.681 +
   1.682 +      while ((n = _level->highestActive()) != INVALID) {
   1.683 +	Value excess = (*_excess)[n];
   1.684 +	int level = _level->highestActiveLevel();
   1.685 +	int new_level = _level->maxLevel();
   1.686 +
   1.687 +	if (_dt->findRoot(n) != n) {
   1.688 +	  if (sendOut(n, excess)) goto no_more_push;
   1.689 +	}
   1.690 +	
   1.691 +	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.692 +	  Value rem = (*_capacity)[e] - (*_flow)[e];
   1.693 +	  Node v = _graph.target(e);
   1.694 +	  
   1.695 +	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
   1.696 +
   1.697 +	  if ((*_level)[v] < level) {
   1.698 +	    
   1.699 +	    if (_dt->findSize(n) + _dt->findSize(v) < 
   1.700 +		_tree_bound * _max_tree_size) {
   1.701 +	      _dt->addCost(n, -_max_value);
   1.702 +	      _dt->addCost(n, rem);
   1.703 +	      _dt->link(n, v);
   1.704 +	      _dt_edges->set(n, e);
   1.705 +	      if (sendOut(n, excess)) goto no_more_push;
   1.706 +	    } else {
   1.707 +	      if (!_level->active(v) && v != _target) {
   1.708 +		_level->activate(v);
   1.709 +	      }
   1.710 +	      if (!_tolerance.less(rem, excess)) {
   1.711 +		_flow->set(e, (*_flow)[e] + excess);
   1.712 +		_excess->set(v, (*_excess)[v] + excess);
   1.713 +		excess = 0;		  
   1.714 +		goto no_more_push;
   1.715 +	      } else {
   1.716 +		excess -= rem;
   1.717 +		_excess->set(v, (*_excess)[v] + rem);
   1.718 +		_flow->set(e, (*_capacity)[e]);
   1.719 +	      }		
   1.720 +	    }
   1.721 +	  } else if (new_level > (*_level)[v]) {
   1.722 +	    new_level = (*_level)[v];
   1.723 +	  }
   1.724 +	}
   1.725 +
   1.726 +	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.727 +	  Value rem = (*_flow)[e];
   1.728 +	  Node v = _graph.source(e);
   1.729 +	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
   1.730 +
   1.731 +	  if ((*_level)[v] < level) {
   1.732 +	    
   1.733 +	    if (_dt->findSize(n) + _dt->findSize(v) < 
   1.734 +		_tree_bound * _max_tree_size) {
   1.735 +	      _dt->addCost(n, - _max_value);
   1.736 +	      _dt->addCost(n, rem);
   1.737 +	      _dt->link(n, v);
   1.738 +	      _dt_edges->set(n, e);
   1.739 +	      if (sendOut(n, excess)) goto no_more_push;
   1.740 +	    } else {
   1.741 +	      if (!_level->active(v) && v != _target) {
   1.742 +		_level->activate(v);
   1.743 +	      }
   1.744 +	      if (!_tolerance.less(rem, excess)) {
   1.745 +		_flow->set(e, (*_flow)[e] - excess);
   1.746 +		_excess->set(v, (*_excess)[v] + excess);
   1.747 +		excess = 0;		  
   1.748 +		goto no_more_push;
   1.749 +	      } else {
   1.750 +		excess -= rem;
   1.751 +		_excess->set(v, (*_excess)[v] + rem);
   1.752 +		_flow->set(e, 0);
   1.753 +	      }		
   1.754 +	    }
   1.755 +	  } else if (new_level > (*_level)[v]) {
   1.756 +	    new_level = (*_level)[v];
   1.757 +	  }
   1.758 +	}
   1.759 +		
   1.760 +      no_more_push:
   1.761 +
   1.762 +	_excess->set(n, excess);
   1.763 +	
   1.764 +	if (excess != 0) {
   1.765 +	  cutChildren(n);
   1.766 +	  if (new_level + 1 < _level->maxLevel()) {
   1.767 +	    _level->liftHighestActive(new_level + 1);
   1.768 +	  } else {
   1.769 +	    _level->liftHighestActiveToTop();
   1.770 +	  }
   1.771 +	  if (_level->emptyLevel(level)) {
   1.772 +	    _level->liftToTop(level);
   1.773 +	  }
   1.774 +	} else {
   1.775 +	  _level->deactivate(n);
   1.776 +	}	
   1.777 +      }
   1.778 +      extractTrees();
   1.779 +    }
   1.780 +
   1.781 +    /// \brief Starts the second phase of the preflow algorithm.
   1.782 +    ///
   1.783 +    /// The preflow algorithm consists of two phases, this method runs
   1.784 +    /// the second phase. After calling \ref init() and \ref
   1.785 +    /// startFirstPhase() and then \ref startSecondPhase(), \ref
   1.786 +    /// flowMap() return a maximum flow, \ref flowValue() returns the
   1.787 +    /// value of a maximum flow, \ref minCut() returns a minimum cut
   1.788 +    /// \pre The \ref init() and startFirstPhase() functions should be
   1.789 +    /// called before.
   1.790 +    void startSecondPhase() {
   1.791 +      _phase = false;
   1.792 +      
   1.793 +      typename Graph::template NodeMap<bool> reached(_graph, false);
   1.794 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.795 +	reached.set(n, (*_level)[n] < _level->maxLevel());
   1.796 +      }
   1.797 +
   1.798 +      _level->initStart();
   1.799 +      _level->initAddItem(_source);
   1.800 + 
   1.801 +      std::vector<Node> queue;
   1.802 +      queue.push_back(_source);
   1.803 +      reached.set(_source, true);
   1.804 +
   1.805 +      while (!queue.empty()) {
   1.806 +	_level->initNewLevel();
   1.807 +	std::vector<Node> nqueue;
   1.808 +	for (int i = 0; i < int(queue.size()); ++i) {
   1.809 +	  Node n = queue[i];
   1.810 +	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.811 +	    Node v = _graph.target(e);
   1.812 +	    if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   1.813 +	      reached.set(v, true);
   1.814 +	      _level->initAddItem(v);
   1.815 +	      nqueue.push_back(v);
   1.816 +	    }
   1.817 +	  }
   1.818 +	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.819 +	    Node u = _graph.source(e);
   1.820 +	    if (!reached[u] && 
   1.821 +		_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   1.822 +	      reached.set(u, true);
   1.823 +	      _level->initAddItem(u);
   1.824 +	      nqueue.push_back(u);
   1.825 +	    }
   1.826 +	  }
   1.827 +	}
   1.828 +	queue.swap(nqueue);
   1.829 +      }
   1.830 +      _level->initFinish();
   1.831 +
   1.832 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.833 +	if ((*_excess)[n] > 0 && _target != n) {
   1.834 +	  _level->activate(n);
   1.835 +	}
   1.836 +      }
   1.837 +
   1.838 +      Node n;
   1.839 +
   1.840 +      while ((n = _level->highestActive()) != INVALID) {
   1.841 +	Value excess = (*_excess)[n];
   1.842 +	int level = _level->highestActiveLevel();
   1.843 +	int new_level = _level->maxLevel();
   1.844 +
   1.845 +	if (_dt->findRoot(n) != n) {
   1.846 +	  if (sendIn(n, excess)) goto no_more_push;
   1.847 +	}
   1.848 +	
   1.849 +	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.850 +	  Value rem = (*_capacity)[e] - (*_flow)[e];
   1.851 +	  Node v = _graph.target(e);
   1.852 +	  
   1.853 +	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
   1.854 +
   1.855 +	  if ((*_level)[v] < level) {
   1.856 +	    
   1.857 +	    if (_dt->findSize(n) + _dt->findSize(v) < 
   1.858 +		_tree_bound * _max_tree_size) {
   1.859 +	      _dt->addCost(n, -_max_value);
   1.860 +	      _dt->addCost(n, rem);
   1.861 +	      _dt->link(n, v);
   1.862 +	      _dt_edges->set(n, e);
   1.863 +	      if (sendIn(n, excess)) goto no_more_push;
   1.864 +	    } else {
   1.865 +	      if (!_level->active(v) && v != _source) {
   1.866 +		_level->activate(v);
   1.867 +	      }
   1.868 +	      if (!_tolerance.less(rem, excess)) {
   1.869 +		_flow->set(e, (*_flow)[e] + excess);
   1.870 +		_excess->set(v, (*_excess)[v] + excess);
   1.871 +		excess = 0;		  
   1.872 +		goto no_more_push;
   1.873 +	      } else {
   1.874 +		excess -= rem;
   1.875 +		_excess->set(v, (*_excess)[v] + rem);
   1.876 +		_flow->set(e, (*_capacity)[e]);
   1.877 +	      }		
   1.878 +	    }
   1.879 +	  } else if (new_level > (*_level)[v]) {
   1.880 +	    new_level = (*_level)[v];
   1.881 +	  }
   1.882 +	}
   1.883 +
   1.884 +	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   1.885 +	  Value rem = (*_flow)[e];
   1.886 +	  Node v = _graph.source(e);
   1.887 +	  if (!_tolerance.positive(rem) && (*_dt_edges)[v] != e) continue;
   1.888 +
   1.889 +	  if ((*_level)[v] < level) {
   1.890 +	    
   1.891 +	    if (_dt->findSize(n) + _dt->findSize(v) < 
   1.892 +		_tree_bound * _max_tree_size) {
   1.893 +	      _dt->addCost(n, - _max_value);
   1.894 +	      _dt->addCost(n, rem);
   1.895 +	      _dt->link(n, v);
   1.896 +	      _dt_edges->set(n, e);
   1.897 +	      if (sendIn(n, excess)) goto no_more_push;
   1.898 +	    } else {
   1.899 +	      if (!_level->active(v) && v != _source) {
   1.900 +		_level->activate(v);
   1.901 +	      }
   1.902 +	      if (!_tolerance.less(rem, excess)) {
   1.903 +		_flow->set(e, (*_flow)[e] - excess);
   1.904 +		_excess->set(v, (*_excess)[v] + excess);
   1.905 +		excess = 0;		  
   1.906 +		goto no_more_push;
   1.907 +	      } else {
   1.908 +		excess -= rem;
   1.909 +		_excess->set(v, (*_excess)[v] + rem);
   1.910 +		_flow->set(e, 0);
   1.911 +	      }		
   1.912 +	    }
   1.913 +	  } else if (new_level > (*_level)[v]) {
   1.914 +	    new_level = (*_level)[v];
   1.915 +	  }
   1.916 +	}
   1.917 +		
   1.918 +      no_more_push:
   1.919 +
   1.920 +	_excess->set(n, excess);
   1.921 +	
   1.922 +	if (excess != 0) {
   1.923 +	  cutChildren(n);
   1.924 +	  if (new_level + 1 < _level->maxLevel()) {
   1.925 +	    _level->liftHighestActive(new_level + 1);
   1.926 +	  } else {
   1.927 +	    _level->liftHighestActiveToTop();
   1.928 +	  }
   1.929 +	  if (_level->emptyLevel(level)) {
   1.930 +	    _level->liftToTop(level);
   1.931 +	  }
   1.932 +	} else {
   1.933 +	  _level->deactivate(n);
   1.934 +	}	
   1.935 +      }
   1.936 +      extractTrees();
   1.937 +    }
   1.938 +
   1.939 +    /// \brief Runs the Goldberg-Tarjan algorithm.  
   1.940 +    ///
   1.941 +    /// Runs the Goldberg-Tarjan algorithm.
   1.942 +    /// \note pf.run() is just a shortcut of the following code.
   1.943 +    /// \code
   1.944 +    ///   pf.init();
   1.945 +    ///   pf.startFirstPhase();
   1.946 +    ///   pf.startSecondPhase();
   1.947 +    /// \endcode
   1.948 +    void run() {
   1.949 +      init();
   1.950 +      startFirstPhase();
   1.951 +      startSecondPhase();
   1.952 +    }
   1.953 +
   1.954 +    /// \brief Runs the Goldberg-Tarjan algorithm to compute the minimum cut.  
   1.955 +    ///
   1.956 +    /// Runs the Goldberg-Tarjan algorithm to compute the minimum cut.
   1.957 +    /// \note pf.runMinCut() is just a shortcut of the following code.
   1.958 +    /// \code
   1.959 +    ///   pf.init();
   1.960 +    ///   pf.startFirstPhase();
   1.961 +    /// \endcode
   1.962 +    void runMinCut() {
   1.963 +      init();
   1.964 +      startFirstPhase();
   1.965 +    }
   1.966 +
   1.967 +    /// @}
   1.968 +
   1.969 +    /// \name Query Functions
   1.970 +    /// The result of the %Dijkstra algorithm can be obtained using these
   1.971 +    /// functions.\n
   1.972 +    /// Before the use of these functions,
   1.973 +    /// either run() or start() must be called.
   1.974 +    
   1.975 +    ///@{
   1.976 +
   1.977 +    /// \brief Returns the value of the maximum flow.
   1.978 +    ///
   1.979 +    /// Returns the value of the maximum flow by returning the excess
   1.980 +    /// of the target node \c t. This value equals to the value of
   1.981 +    /// the maximum flow already after the first phase.
   1.982 +    Value flowValue() const {
   1.983 +      return (*_excess)[_target];
   1.984 +    }
   1.985 +
   1.986 +    /// \brief Returns true when the node is on the source side of minimum cut.
   1.987 +    ///
   1.988 +    /// Returns true when the node is on the source side of minimum
   1.989 +    /// cut. This method can be called both after running \ref
   1.990 +    /// startFirstPhase() and \ref startSecondPhase().
   1.991 +    bool minCut(const Node& node) const {
   1.992 +      return ((*_level)[node] == _level->maxLevel()) == _phase;
   1.993 +    }
   1.994 + 
   1.995 +    /// \brief Returns a minimum value cut.
   1.996 +    ///
   1.997 +    /// Sets the \c cutMap to the characteristic vector of a minimum value
   1.998 +    /// cut. This method can be called both after running \ref
   1.999 +    /// startFirstPhase() and \ref startSecondPhase(). The result after second
  1.1000 +    /// phase could be changed slightly if inexact computation is used.
  1.1001 +    /// \pre The \c cutMap should be a bool-valued node-map.
  1.1002 +    template <typename CutMap>
  1.1003 +    void minCutMap(CutMap& cutMap) const {
  1.1004 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1005 +	cutMap.set(n, minCut(n));
  1.1006 +      }
  1.1007 +    }
  1.1008 +
  1.1009 +    /// \brief Returns the flow on the edge.
  1.1010 +    ///
  1.1011 +    /// Sets the \c flowMap to the flow on the edges. This method can
  1.1012 +    /// be called after the second phase of algorithm.
  1.1013 +    Value flow(const Edge& edge) const {
  1.1014 +      return (*_flow)[edge];
  1.1015 +    }
  1.1016 +
  1.1017 +    /// @}
  1.1018 +
  1.1019 +  }; 
  1.1020 +  
  1.1021 +} //namespace lemon
  1.1022 +
  1.1023 +#endif