lemon/min_cost_arborescence.h
changeset 2017 6064fd33807c
child 2025 93fcadf94ab0
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/min_cost_arborescence.h	Mon Mar 27 08:12:01 2006 +0000
     1.3 @@ -0,0 +1,561 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2006
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_MIN_COST_ARBORESCENCE_H
    1.23 +#define LEMON_MIN_COST_ARBORESCENCE_H
    1.24 +
    1.25 +///\ingroup spantree
    1.26 +///\file
    1.27 +///\brief Minimum Cost Arborescence algorithm.
    1.28 +
    1.29 +#include <vector>
    1.30 +
    1.31 +#include <lemon/list_graph.h>
    1.32 +
    1.33 +namespace lemon {
    1.34 +
    1.35 +
    1.36 +  /// \brief Default traits class of MinCostArborescence class.
    1.37 +  /// 
    1.38 +  /// Default traits class of MinCostArborescence class.
    1.39 +  /// \param _Graph Graph type.
    1.40 +  /// \param _CostMap Type of cost map.
    1.41 +  template <class _Graph, class _CostMap>
    1.42 +  struct MinCostArborescenceDefaultTraits{
    1.43 +
    1.44 +    /// \brief The graph type the algorithm runs on. 
    1.45 +    typedef _Graph Graph;
    1.46 +
    1.47 +    /// \brief The type of the map that stores the edge costs.
    1.48 +    ///
    1.49 +    /// The type of the map that stores the edge costs.
    1.50 +    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    1.51 +    typedef _CostMap CostMap;
    1.52 +
    1.53 +    /// \brief The value type of the costs.
    1.54 +    ///
    1.55 +    /// The value type of the costs.
    1.56 +    typedef typename CostMap::Value Value;
    1.57 +
    1.58 +    /// \brief The type of the map that stores which edges are 
    1.59 +    /// in the arborescence.
    1.60 +    ///
    1.61 +    /// The type of the map that stores which edges are in the arborescence.
    1.62 +    /// It must meet the \ref concept::ReadWriteMap "ReadWriteMap" concept.
    1.63 +    /// Initially it will be setted to false on each edge. The algorithm
    1.64 +    /// may set each value one time to true and maybe after it to false again.
    1.65 +    /// Therefore you cannot use maps like BackInserteBoolMap with this
    1.66 +    /// algorithm.   
    1.67 +    typedef typename Graph::template EdgeMap<bool> ArborescenceMap; 
    1.68 +
    1.69 +    /// \brief Instantiates a ArborescenceMap.
    1.70 +    ///
    1.71 +    /// This function instantiates a \ref ArborescenceMap. 
    1.72 +    /// \param _graph is the graph, to which we would like to define the 
    1.73 +    /// ArborescenceMap.
    1.74 +    static ArborescenceMap *createArborescenceMap(const Graph &_graph){
    1.75 +      return new ArborescenceMap(_graph);
    1.76 +    }
    1.77 +
    1.78 +  };
    1.79 +
    1.80 +  /// \ingroup spantree
    1.81 +  ///
    1.82 +  /// \brief %MinCostArborescence algorithm class.
    1.83 +  ///
    1.84 +  /// This class provides an efficient implementation of 
    1.85 +  /// %MinCostArborescence algorithm. The arborescence is a tree 
    1.86 +  /// which is directed from a given source node of the graph. One or
    1.87 +  /// more sources should be given for the algorithm and it will calculate
    1.88 +  /// the minimum cost subgraph which are union of arborescences with the
    1.89 +  /// given sources and spans all the nodes which are reachable from the
    1.90 +  /// sources. The time complexity of the algorithm is O(n^2 + e).
    1.91 +  ///
    1.92 +  /// \param _Graph The graph type the algorithm runs on. The default value
    1.93 +  /// is \ref ListGraph. The value of _Graph is not used directly by
    1.94 +  /// MinCostArborescence, it is only passed to 
    1.95 +  /// \ref MinCostArborescenceDefaultTraits.
    1.96 +  /// \param _CostMap This read-only EdgeMap determines the costs of the
    1.97 +  /// edges. It is read once for each edge, so the map may involve in
    1.98 +  /// relatively time consuming process to compute the edge cost if
    1.99 +  /// it is necessary. The default map type is \ref
   1.100 +  /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   1.101 +  /// of _CostMap is not used directly by MinCostArborescence, 
   1.102 +  /// it is only passed to \ref MinCostArborescenceDefaultTraits.  
   1.103 +  /// \param _Traits Traits class to set various data types used 
   1.104 +  /// by the algorithm.  The default traits class is 
   1.105 +  /// \ref MinCostArborescenceDefaultTraits
   1.106 +  /// "MinCostArborescenceDefaultTraits<_Graph,_CostMap>".  See \ref
   1.107 +  /// MinCostArborescenceDefaultTraits for the documentation of a 
   1.108 +  /// MinCostArborescence traits class.
   1.109 +  ///
   1.110 +  /// \author Balazs Dezso
   1.111 +#ifndef DOXYGEN
   1.112 +  template <typename _Graph = ListGraph, 
   1.113 +            typename _CostMap = typename _Graph::template EdgeMap<int>,
   1.114 +            typename _Traits = 
   1.115 +            MinCostArborescenceDefaultTraits<_Graph, _CostMap> >
   1.116 +#else 
   1.117 +  template <typename _Graph, typename _CostMap, typedef _Traits>
   1.118 +#endif
   1.119 +  class MinCostArborescence {
   1.120 +  public:
   1.121 +
   1.122 +    /// \brief \ref Exception for uninitialized parameters.
   1.123 +    ///
   1.124 +    /// This error represents problems in the initialization
   1.125 +    /// of the parameters of the algorithms.    
   1.126 +    class UninitializedParameter : public lemon::UninitializedParameter {
   1.127 +    public:
   1.128 +      virtual const char* exceptionName() const {
   1.129 +	return "lemon::MinCostArborescence::UninitializedParameter";
   1.130 +      }
   1.131 +    };
   1.132 +
   1.133 +    /// The traits.
   1.134 +    typedef _Traits Traits;
   1.135 +    /// The type of the underlying graph.
   1.136 +    typedef typename Traits::Graph Graph;
   1.137 +    /// The type of the map that stores the edge costs.
   1.138 +    typedef typename Traits::CostMap CostMap;
   1.139 +    ///The type of the costs of the edges.
   1.140 +    typedef typename Traits::Value Value;
   1.141 +    ///The type of the map that stores which edges are in the arborescence.
   1.142 +    typedef typename Traits::ArborescenceMap ArborescenceMap;
   1.143 +
   1.144 +  protected:
   1.145 +
   1.146 +    typedef typename Graph::Node Node;
   1.147 +    typedef typename Graph::Edge Edge;
   1.148 +    typedef typename Graph::NodeIt NodeIt;
   1.149 +    typedef typename Graph::EdgeIt EdgeIt;
   1.150 +    typedef typename Graph::InEdgeIt InEdgeIt;
   1.151 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
   1.152 +
   1.153 +    struct CostEdge {
   1.154 +
   1.155 +      Edge edge;
   1.156 +      Value value;
   1.157 +
   1.158 +      CostEdge() {}
   1.159 +      CostEdge(Edge _edge, Value _value) : edge(_edge), value(_value) {}
   1.160 +
   1.161 +    };
   1.162 +
   1.163 +    const Graph* graph;
   1.164 +    const CostMap* cost;
   1.165 +
   1.166 +    ArborescenceMap* _arborescence_map;
   1.167 +    bool local_arborescence_map;
   1.168 +
   1.169 +    typedef typename Graph::template NodeMap<int> LevelMap;
   1.170 +    LevelMap *_level;
   1.171 +
   1.172 +    typedef typename Graph::template NodeMap<CostEdge> CostEdgeMap;
   1.173 +    CostEdgeMap *_cost_edges; 
   1.174 +
   1.175 +    struct StackLevel {
   1.176 +
   1.177 +      std::vector<CostEdge> edges;
   1.178 +      int node_level;
   1.179 +
   1.180 +    };
   1.181 +
   1.182 +    std::vector<StackLevel> level_stack;    
   1.183 +    std::vector<Node> queue;
   1.184 +
   1.185 +    int node_counter;
   1.186 +
   1.187 +  public:
   1.188 +
   1.189 +    /// \name Named template parameters
   1.190 +
   1.191 +    /// @{
   1.192 +
   1.193 +    template <class T>
   1.194 +    struct DefArborescenceMapTraits : public Traits {
   1.195 +      typedef T ArborescenceMap;
   1.196 +      static ArborescenceMap *createArborescenceMap(const Graph &)
   1.197 +      {
   1.198 +	throw UninitializedParameter();
   1.199 +      }
   1.200 +    };
   1.201 +
   1.202 +    /// \brief \ref named-templ-param "Named parameter" for 
   1.203 +    /// setting ArborescenceMap type
   1.204 +    ///
   1.205 +    /// \ref named-templ-param "Named parameter" for setting 
   1.206 +    /// ArborescenceMap type
   1.207 +    template <class T>
   1.208 +    struct DefArborescenceMap 
   1.209 +      : public MinCostArborescence<Graph, CostMap,
   1.210 +                                   DefArborescenceMapTraits<T> > {
   1.211 +      typedef MinCostArborescence<Graph, CostMap, 
   1.212 +                                   DefArborescenceMapTraits<T> > Create;
   1.213 +    };
   1.214 +    
   1.215 +    /// @}
   1.216 +
   1.217 +    /// \brief Constructor.
   1.218 +    ///
   1.219 +    /// \param _graph The graph the algorithm will run on.
   1.220 +    /// \param _cost The cost map used by the algorithm.
   1.221 +    MinCostArborescence(const Graph& _graph, const CostMap& _cost) 
   1.222 +      : graph(&_graph), cost(&_cost),
   1.223 +        _arborescence_map(0), local_arborescence_map(false), 
   1.224 +        _level(0), _cost_edges(0) {}
   1.225 +
   1.226 +    /// \brief Destructor.
   1.227 +    ~MinCostArborescence() {
   1.228 +      destroyStructures();
   1.229 +    }
   1.230 +
   1.231 +    /// \brief Sets the arborescence map.
   1.232 +    /// 
   1.233 +    /// Sets the arborescence map.
   1.234 +    /// \return \c (*this)
   1.235 +    MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
   1.236 +      _arborescence_map = &m;
   1.237 +      return *this;
   1.238 +    }
   1.239 +
   1.240 +    /// \name Query Functions
   1.241 +    /// The result of the %MinCostArborescence algorithm can be obtained 
   1.242 +    /// using these functions.\n
   1.243 +    /// Before the use of these functions,
   1.244 +    /// either run() or start() must be called.
   1.245 +    
   1.246 +    /// @{
   1.247 +
   1.248 +    /// \brief Returns a reference to the arborescence map.
   1.249 +    ///
   1.250 +    /// Returns a reference to the arborescence map.
   1.251 +    const ArborescenceMap& arborescenceMap() const {
   1.252 +      return *_arborescence_map;
   1.253 +    }
   1.254 +
   1.255 +    /// \brief Returns true if the edge is in the arborescence.
   1.256 +    ///
   1.257 +    /// Returns true if the edge is in the arborescence.
   1.258 +    /// \param edge The edge of the graph.
   1.259 +    /// \pre \ref run() must be called before using this function.
   1.260 +    bool arborescenceEdge(Edge edge) const {
   1.261 +      return (*_arborescence_map)[edge];
   1.262 +    }
   1.263 + 
   1.264 +    /// \brief Returns the cost of the arborescence.
   1.265 +    ///
   1.266 +    /// Returns the cost of the arborescence.
   1.267 +   Value arborescenceCost() const {
   1.268 +      Value sum = 0;
   1.269 +      for (EdgeIt it(*graph); it != INVALID; ++it) {
   1.270 +        if (arborescenceEdge(it)) {
   1.271 +          sum += (*cost)[it];
   1.272 +        }
   1.273 +      }
   1.274 +      return sum;
   1.275 +    }
   1.276 +
   1.277 +    /// @}
   1.278 +    
   1.279 +    /// \name Execution control
   1.280 +    /// The simplest way to execute the algorithm is to use
   1.281 +    /// one of the member functions called \c run(...). \n
   1.282 +    /// If you need more control on the execution,
   1.283 +    /// first you must call \ref init(), then you can add several 
   1.284 +    /// source nodes with \ref addSource().
   1.285 +    /// Finally \ref start() will perform the actual path
   1.286 +    /// computation.
   1.287 +
   1.288 +    ///@{
   1.289 +
   1.290 +    /// \brief Initializes the internal data structures.
   1.291 +    ///
   1.292 +    /// Initializes the internal data structures.
   1.293 +    ///
   1.294 +    void init() {
   1.295 +      initStructures();
   1.296 +      for (NodeIt it(*graph); it != INVALID; ++it) {
   1.297 +        (*_cost_edges)[it].edge = INVALID;
   1.298 +        (*_level)[it] = -3; 
   1.299 +      }
   1.300 +      for (EdgeIt it(*graph); it != INVALID; ++it) {
   1.301 +        _arborescence_map->set(it, false);
   1.302 +      }
   1.303 +    }
   1.304 +
   1.305 +    /// \brief Adds a new source node.
   1.306 +    ///
   1.307 +    /// Adds a new source node to the algorithm.
   1.308 +    void addSource(Node source) {
   1.309 +      std::vector<Node> nodes;
   1.310 +      nodes.push_back(source);
   1.311 +      while (!nodes.empty()) {
   1.312 +        Node node = nodes.back();
   1.313 +        nodes.pop_back();
   1.314 +        for (OutEdgeIt it(*graph, node); it != INVALID; ++it) {
   1.315 +          if ((*_level)[graph->target(it)] == -3) {
   1.316 +            (*_level)[graph->target(it)] = -2;
   1.317 +            nodes.push_back(graph->target(it));
   1.318 +            queue.push_back(graph->target(it));
   1.319 +          }
   1.320 +        }
   1.321 +      }
   1.322 +      (*_level)[source] = -1;
   1.323 +    }
   1.324 +
   1.325 +    /// \brief Processes the next node in the priority queue.
   1.326 +    ///
   1.327 +    /// Processes the next node in the priority queue.
   1.328 +    ///
   1.329 +    /// \return The processed node.
   1.330 +    ///
   1.331 +    /// \warning The queue must not be empty!
   1.332 +    Node processNextNode() {
   1.333 +      node_counter = 0;
   1.334 +      Node node = queue.back();
   1.335 +      queue.pop_back();
   1.336 +      if ((*_level)[node] == -2) {
   1.337 +        Edge edge = prepare(node);
   1.338 +        while ((*_level)[graph->source(edge)] != -1) {
   1.339 +          if ((*_level)[graph->source(edge)] >= 0) {
   1.340 +            edge = contract(bottom((*_level)[graph->source(edge)]));
   1.341 +          } else {
   1.342 +            edge = prepare(graph->source(edge));
   1.343 +          }
   1.344 +        }
   1.345 +        finalize(graph->target(edge));
   1.346 +        level_stack.clear();        
   1.347 +      }
   1.348 +      return node;
   1.349 +    }
   1.350 +
   1.351 +    /// \brief Returns the number of the nodes to be processed.
   1.352 +    ///
   1.353 +    /// Returns the number of the nodes to be processed.
   1.354 +    int queueSize() const {
   1.355 +      return queue.size();
   1.356 +    }
   1.357 +
   1.358 +    /// \brief Returns \c false if there are nodes to be processed.
   1.359 +    ///
   1.360 +    /// Returns \c false if there are nodes to be processed.
   1.361 +    bool emptyQueue() const {
   1.362 +      return queue.empty();
   1.363 +    }
   1.364 +
   1.365 +    /// \brief Executes the algorithm.
   1.366 +    ///
   1.367 +    /// Executes the algorithm.
   1.368 +    ///
   1.369 +    /// \pre init() must be called and at least one node should be added
   1.370 +    /// with addSource() before using this function.
   1.371 +    ///
   1.372 +    ///\note mca.start() is just a shortcut of the following code.
   1.373 +    ///\code
   1.374 +    ///while (!mca.emptyQueue()) {
   1.375 +    ///  mca.processNextNode();
   1.376 +    ///}
   1.377 +    ///\endcode
   1.378 +    void start() {
   1.379 +      while (!emptyQueue()) {
   1.380 +        processNextNode();
   1.381 +      }
   1.382 +    }
   1.383 +
   1.384 +    /// \brief Runs %MinCostArborescence algorithm from node \c s.
   1.385 +    /// 
   1.386 +    /// This method runs the %MinCostArborescence algorithm from 
   1.387 +    /// a root node \c s.
   1.388 +    ///
   1.389 +    ///\note mca.run(s) is just a shortcut of the following code.
   1.390 +    ///\code
   1.391 +    ///mca.init();
   1.392 +    ///mca.addSource(s);
   1.393 +    ///mca.start();
   1.394 +    ///\endcode
   1.395 +    void run(Node node) {
   1.396 +      init();
   1.397 +      addSource(node);
   1.398 +      start();
   1.399 +    }
   1.400 +
   1.401 +    ///@}
   1.402 +
   1.403 +  protected:
   1.404 +
   1.405 +    void initStructures() {
   1.406 +      if (!_arborescence_map) {
   1.407 +        local_arborescence_map = true;
   1.408 +        _arborescence_map = Traits::createArborescenceMap(*graph);
   1.409 +      }
   1.410 +      if (!_level) {
   1.411 +        _level = new LevelMap(*graph);
   1.412 +      }
   1.413 +      if (!_cost_edges) {
   1.414 +        _cost_edges = new CostEdgeMap(*graph);
   1.415 +      }
   1.416 +    }
   1.417 +
   1.418 +    void destroyStructures() {
   1.419 +      if (_level) {
   1.420 +        delete _level;
   1.421 +      }
   1.422 +      if (!_cost_edges) {
   1.423 +        delete _cost_edges;
   1.424 +      }
   1.425 +      if (local_arborescence_map) {
   1.426 +        delete _arborescence_map;
   1.427 +      }
   1.428 +    }
   1.429 +
   1.430 +    Edge prepare(Node node) {
   1.431 +      std::vector<Node> nodes;
   1.432 +      (*_level)[node] = node_counter;
   1.433 +      for (InEdgeIt it(*graph, node); it != INVALID; ++it) {
   1.434 +        Edge edge = it;
   1.435 +        Value value = (*cost)[it];
   1.436 +        if (graph->source(edge) == node || 
   1.437 +            (*_level)[graph->source(edge)] == -3) continue;
   1.438 +        if ((*_cost_edges)[graph->source(edge)].edge == INVALID) {
   1.439 +          (*_cost_edges)[graph->source(edge)].edge = edge;
   1.440 +          (*_cost_edges)[graph->source(edge)].value = value;
   1.441 +          nodes.push_back(graph->source(edge));
   1.442 +        } else {
   1.443 +          if ((*_cost_edges)[graph->source(edge)].value > value) {
   1.444 +            (*_cost_edges)[graph->source(edge)].edge = edge;
   1.445 +            (*_cost_edges)[graph->source(edge)].value = value;
   1.446 +          }
   1.447 +        }      
   1.448 +      }
   1.449 +      CostEdge minimum = (*_cost_edges)[nodes[0]]; 
   1.450 +      for (int i = 1; i < (int)nodes.size(); ++i) {
   1.451 +        if ((*_cost_edges)[nodes[i]].value < minimum.value) {
   1.452 +          minimum = (*_cost_edges)[nodes[i]];
   1.453 +        }
   1.454 +      }
   1.455 +      StackLevel level;
   1.456 +      level.node_level = node_counter;
   1.457 +      for (int i = 0; i < (int)nodes.size(); ++i) {
   1.458 +        (*_cost_edges)[nodes[i]].value -= minimum.value;
   1.459 +        level.edges.push_back((*_cost_edges)[nodes[i]]);
   1.460 +        (*_cost_edges)[nodes[i]].edge = INVALID;
   1.461 +      }
   1.462 +      level_stack.push_back(level);
   1.463 +      ++node_counter;
   1.464 +      _arborescence_map->set(minimum.edge, true);
   1.465 +      return minimum.edge;
   1.466 +    }
   1.467 +  
   1.468 +    Edge contract(int node_bottom) {
   1.469 +      std::vector<Node> nodes;
   1.470 +      while (!level_stack.empty() && 
   1.471 +             level_stack.back().node_level >= node_bottom) {
   1.472 +        for (int i = 0; i < (int)level_stack.back().edges.size(); ++i) {
   1.473 +          Edge edge = level_stack.back().edges[i].edge;
   1.474 +          Value value = level_stack.back().edges[i].value;
   1.475 +          if ((*_level)[graph->source(edge)] >= node_bottom) continue;
   1.476 +          if ((*_cost_edges)[graph->source(edge)].edge == INVALID) {
   1.477 +            (*_cost_edges)[graph->source(edge)].edge = edge;
   1.478 +            (*_cost_edges)[graph->source(edge)].value = value;
   1.479 +            nodes.push_back(graph->source(edge));
   1.480 +          } else {
   1.481 +            if ((*_cost_edges)[graph->source(edge)].value > value) {
   1.482 +              (*_cost_edges)[graph->source(edge)].edge = edge;
   1.483 +              (*_cost_edges)[graph->source(edge)].value = value;
   1.484 +            }
   1.485 +          }
   1.486 +        }
   1.487 +        level_stack.pop_back();
   1.488 +      }
   1.489 +      CostEdge minimum = (*_cost_edges)[nodes[0]]; 
   1.490 +      for (int i = 1; i < (int)nodes.size(); ++i) {
   1.491 +        if ((*_cost_edges)[nodes[i]].value < minimum.value) {
   1.492 +          minimum = (*_cost_edges)[nodes[i]];
   1.493 +        }
   1.494 +      }
   1.495 +      StackLevel level;
   1.496 +      level.node_level = node_bottom;
   1.497 +      for (int i = 0; i < (int)nodes.size(); ++i) {
   1.498 +        (*_cost_edges)[nodes[i]].value -= minimum.value;
   1.499 +        level.edges.push_back((*_cost_edges)[nodes[i]]);
   1.500 +        (*_cost_edges)[nodes[i]].edge = INVALID;
   1.501 +      }
   1.502 +      level_stack.push_back(level);
   1.503 +      _arborescence_map->set(minimum.edge, true);
   1.504 +      return minimum.edge;
   1.505 +    }
   1.506 +
   1.507 +    int bottom(int level) {
   1.508 +      int k = level_stack.size() - 1;
   1.509 +      while (level_stack[k].node_level > level) {
   1.510 +        --k;
   1.511 +      }
   1.512 +      return level_stack[k].node_level;
   1.513 +    }
   1.514 +
   1.515 +    void finalize(Node source) {
   1.516 +      std::vector<Node> nodes;
   1.517 +      nodes.push_back(source);
   1.518 +      while (!nodes.empty()) {
   1.519 +        Node node = nodes.back();
   1.520 +        nodes.pop_back();
   1.521 +        for (OutEdgeIt it(*graph, node); it != INVALID; ++it) {
   1.522 +          if ((*_level)[graph->target(it)] >= 0 && (*_arborescence_map)[it]) {
   1.523 +            (*_level)[graph->target(it)] = -1;
   1.524 +            nodes.push_back(graph->target(it));
   1.525 +          } else {
   1.526 +            _arborescence_map->set(it, false);
   1.527 +          }
   1.528 +        }
   1.529 +      }
   1.530 +      (*_level)[source] = -1;      
   1.531 +    }
   1.532 +
   1.533 +  };
   1.534 +
   1.535 +  /// \ingroup spantree
   1.536 +  ///
   1.537 +  /// \brief Function type interface for MinCostArborescence algorithm.
   1.538 +  ///
   1.539 +  /// Function type interface for MinCostArborescence algorithm.
   1.540 +  /// \param graph The Graph that the algorithm runs on.
   1.541 +  /// \param cost The CostMap of the edges.
   1.542 +  /// \param source The source of the arborescence.
   1.543 +  /// \retval arborescence The bool EdgeMap which stores the arborescence.
   1.544 +  /// \return The cost of the arborescence. 
   1.545 +  ///
   1.546 +  /// \sa MinCostArborescence
   1.547 +  template <typename Graph, typename CostMap, typename ArborescenceMap>
   1.548 +  typename CostMap::Value minCostArborescence(const Graph& graph, 
   1.549 +                                              const CostMap& cost,
   1.550 +                                              typename Graph::Node source,
   1.551 +                                              ArborescenceMap& arborescence) {
   1.552 +    typename MinCostArborescence<Graph, CostMap>
   1.553 +      ::template DefArborescenceMap<ArborescenceMap>
   1.554 +      ::Create mca(graph, cost);
   1.555 +    mca.arborescenceMap(arborescence);
   1.556 +    mca.run(source);
   1.557 +    return mca.arborescenceCost();
   1.558 +  }
   1.559 +
   1.560 +}
   1.561 +
   1.562 +#endif
   1.563 +
   1.564 +// Hilbert - Huang