lemon/xy.h
changeset 2207 75a29ac69c19
parent 2206 c3ff11b0025c
child 2208 37b5c870a953
     1.1 --- a/lemon/xy.h	Wed Sep 06 11:39:22 2006 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,654 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library
     1.7 - *
     1.8 - * Copyright (C) 2003-2006
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_XY_H
    1.23 -#define LEMON_XY_H
    1.24 -
    1.25 -#include <iostream>
    1.26 -#include <lemon/bits/utility.h>
    1.27 -
    1.28 -///\ingroup misc
    1.29 -///\file
    1.30 -///\brief A simple two dimensional vector and a bounding box implementation 
    1.31 -///
    1.32 -/// The class \ref lemon::xy "xy" implements
    1.33 -///a two dimensional vector with the usual
    1.34 -/// operations.
    1.35 -///
    1.36 -/// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
    1.37 -/// the rectangular bounding box of a set of \ref lemon::xy "xy"'s.
    1.38 -///
    1.39 -///\author Attila Bernath
    1.40 -
    1.41 -
    1.42 -namespace lemon {
    1.43 -
    1.44 -  /// \addtogroup misc
    1.45 -  /// @{
    1.46 -
    1.47 -  /// A simple two dimensional vector (plainvector) implementation
    1.48 -
    1.49 -  /// A simple two dimensional vector (plainvector) implementation
    1.50 -  ///with the usual vector
    1.51 -  /// operators.
    1.52 -  ///
    1.53 -  ///\note As you might have noticed, this class does not follow the
    1.54 -  ///\ref naming_conv "LEMON Coding Style" (it should be called \c Xy
    1.55 -  ///according to it). There is a stupid Hungarian proverb, "A kiv&eacute;tel
    1.56 -  ///er&otilde;s&iacute;ti a szab&aacute;lyt" ("An exception
    1.57 -  ///reinforces a rule", which is
    1.58 -  ///actually a mistranslation of the Latin proverb "Exceptio probat regulam").
    1.59 -  ///This class is an example for that.
    1.60 -  ///\author Attila Bernath
    1.61 -  template<typename T>
    1.62 -    class xy {
    1.63 -
    1.64 -    public:
    1.65 -
    1.66 -      typedef T Value;
    1.67 -
    1.68 -      ///First co-ordinate
    1.69 -      T x;
    1.70 -      ///Second co-ordinate
    1.71 -      T y;     
    1.72 -      
    1.73 -      ///Default constructor
    1.74 -      xy() {}
    1.75 -
    1.76 -      ///Construct an instance from coordinates
    1.77 -      xy(T a, T b) : x(a), y(b) { }
    1.78 -
    1.79 -
    1.80 -      ///Conversion constructor
    1.81 -      template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
    1.82 -
    1.83 -      ///Give back the square of the norm of the vector
    1.84 -      T normSquare() const {
    1.85 -        return x*x+y*y;
    1.86 -      }
    1.87 -  
    1.88 -      ///Increment the left hand side by u
    1.89 -      xy<T>& operator +=(const xy<T>& u) {
    1.90 -        x += u.x;
    1.91 -        y += u.y;
    1.92 -        return *this;
    1.93 -      }
    1.94 -  
    1.95 -      ///Decrement the left hand side by u
    1.96 -      xy<T>& operator -=(const xy<T>& u) {
    1.97 -        x -= u.x;
    1.98 -        y -= u.y;
    1.99 -        return *this;
   1.100 -      }
   1.101 -
   1.102 -      ///Multiply the left hand side with a scalar
   1.103 -      xy<T>& operator *=(const T &u) {
   1.104 -        x *= u;
   1.105 -        y *= u;
   1.106 -        return *this;
   1.107 -      }
   1.108 -
   1.109 -      ///Divide the left hand side by a scalar
   1.110 -      xy<T>& operator /=(const T &u) {
   1.111 -        x /= u;
   1.112 -        y /= u;
   1.113 -        return *this;
   1.114 -      }
   1.115 -  
   1.116 -      ///Return the scalar product of two vectors
   1.117 -      T operator *(const xy<T>& u) const {
   1.118 -        return x*u.x+y*u.y;
   1.119 -      }
   1.120 -  
   1.121 -      ///Return the sum of two vectors
   1.122 -      xy<T> operator+(const xy<T> &u) const {
   1.123 -        xy<T> b=*this;
   1.124 -        return b+=u;
   1.125 -      }
   1.126 -
   1.127 -      ///Return the neg of the vectors
   1.128 -      xy<T> operator-() const {
   1.129 -        xy<T> b=*this;
   1.130 -        b.x=-b.x; b.y=-b.y;
   1.131 -        return b;
   1.132 -      }
   1.133 -
   1.134 -      ///Return the difference of two vectors
   1.135 -      xy<T> operator-(const xy<T> &u) const {
   1.136 -        xy<T> b=*this;
   1.137 -        return b-=u;
   1.138 -      }
   1.139 -
   1.140 -      ///Return a vector multiplied by a scalar
   1.141 -      xy<T> operator*(const T &u) const {
   1.142 -        xy<T> b=*this;
   1.143 -        return b*=u;
   1.144 -      }
   1.145 -
   1.146 -      ///Return a vector divided by a scalar
   1.147 -      xy<T> operator/(const T &u) const {
   1.148 -        xy<T> b=*this;
   1.149 -        return b/=u;
   1.150 -      }
   1.151 -
   1.152 -      ///Test equality
   1.153 -      bool operator==(const xy<T> &u) const {
   1.154 -        return (x==u.x) && (y==u.y);
   1.155 -      }
   1.156 -
   1.157 -      ///Test inequality
   1.158 -      bool operator!=(xy u) const {
   1.159 -        return  (x!=u.x) || (y!=u.y);
   1.160 -      }
   1.161 -
   1.162 -    };
   1.163 -
   1.164 -  ///Return an xy 
   1.165 -
   1.166 -  ///Return an xy
   1.167 -  ///\relates xy
   1.168 -  template <typename T>
   1.169 -  inline xy<T> make_xy(const T& x, const T& y) {
   1.170 -    return xy<T>(x, y);
   1.171 -  }
   1.172 -
   1.173 -  ///Return a vector multiplied by a scalar
   1.174 -
   1.175 -  ///Return a vector multiplied by a scalar
   1.176 -  ///\relates xy
   1.177 -  template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
   1.178 -    return x*u;
   1.179 -  }
   1.180 -
   1.181 -  ///Read a plainvector from a stream
   1.182 -
   1.183 -  ///Read a plainvector from a stream
   1.184 -  ///\relates xy
   1.185 -  ///
   1.186 -  template<typename T>
   1.187 -  inline std::istream& operator>>(std::istream &is, xy<T> &z) {
   1.188 -    char c;
   1.189 -    if (is >> c) {
   1.190 -      if (c != '(') is.putback(c);
   1.191 -    } else {
   1.192 -      is.clear();
   1.193 -    }
   1.194 -    if (!(is >> z.x)) return is;
   1.195 -    if (is >> c) {
   1.196 -      if (c != ',') is.putback(c);
   1.197 -    } else {
   1.198 -      is.clear();
   1.199 -    }
   1.200 -    if (!(is >> z.y)) return is;
   1.201 -    if (is >> c) {
   1.202 -      if (c != ')') is.putback(c);
   1.203 -    } else {
   1.204 -      is.clear();
   1.205 -    }
   1.206 -    return is;
   1.207 -  }
   1.208 -
   1.209 -  ///Write a plainvector to a stream
   1.210 -
   1.211 -  ///Write a plainvector to a stream
   1.212 -  ///\relates xy
   1.213 -  ///
   1.214 -  template<typename T>
   1.215 -  inline std::ostream& operator<<(std::ostream &os, const xy<T>& z)
   1.216 -  {
   1.217 -    os << "(" << z.x << ", " << z.y << ")";
   1.218 -    return os;
   1.219 -  }
   1.220 -
   1.221 -  ///Rotate by 90 degrees
   1.222 -
   1.223 -  ///Returns its parameter rotated by 90 degrees in positive direction.
   1.224 -  ///\relates xy
   1.225 -  ///
   1.226 -  template<typename T>
   1.227 -  inline xy<T> rot90(const xy<T> &z)
   1.228 -  {
   1.229 -    return xy<T>(-z.y,z.x);
   1.230 -  }
   1.231 -
   1.232 -  ///Rotate by 180 degrees
   1.233 -
   1.234 -  ///Returns its parameter rotated by 180 degrees.
   1.235 -  ///\relates xy
   1.236 -  ///
   1.237 -  template<typename T>
   1.238 -  inline xy<T> rot180(const xy<T> &z)
   1.239 -  {
   1.240 -    return xy<T>(-z.x,-z.y);
   1.241 -  }
   1.242 -
   1.243 -  ///Rotate by 270 degrees
   1.244 -
   1.245 -  ///Returns its parameter rotated by 90 degrees in negative direction.
   1.246 -  ///\relates xy
   1.247 -  ///
   1.248 -  template<typename T>
   1.249 -  inline xy<T> rot270(const xy<T> &z)
   1.250 -  {
   1.251 -    return xy<T>(z.y,-z.x);
   1.252 -  }
   1.253 -
   1.254 -  
   1.255 -
   1.256 -  /// A class to calculate or store the bounding box of plainvectors.
   1.257 -
   1.258 -  /// A class to calculate or store the bounding box of plainvectors.
   1.259 -  ///
   1.260 -  ///\author Attila Bernath
   1.261 -  template<typename T>
   1.262 -    class BoundingBox {
   1.263 -      xy<T> bottom_left, top_right;
   1.264 -      bool _empty;
   1.265 -    public:
   1.266 -      
   1.267 -      ///Default constructor: creates an empty bounding box
   1.268 -      BoundingBox() { _empty = true; }
   1.269 -
   1.270 -      ///Construct an instance from one point
   1.271 -      BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
   1.272 -
   1.273 -      ///Were any points added?
   1.274 -      bool empty() const {
   1.275 -        return _empty;
   1.276 -      }
   1.277 -
   1.278 -      ///Make the BoundingBox empty
   1.279 -      void clear() {
   1.280 -        _empty=1;
   1.281 -      }
   1.282 -
   1.283 -      ///Give back the bottom left corner
   1.284 -
   1.285 -      ///Give back the bottom left corner.
   1.286 -      ///If the bounding box is empty, then the return value is not defined.
   1.287 -      xy<T> bottomLeft() const {
   1.288 -        return bottom_left;
   1.289 -      }
   1.290 -
   1.291 -      ///Set the bottom left corner
   1.292 -
   1.293 -      ///Set the bottom left corner.
   1.294 -      ///It should only bee used for non-empty box.
   1.295 -      void bottomLeft(xy<T> p) {
   1.296 -	bottom_left = p;
   1.297 -      }
   1.298 -
   1.299 -      ///Give back the top right corner
   1.300 -
   1.301 -      ///Give back the top right corner.
   1.302 -      ///If the bounding box is empty, then the return value is not defined.
   1.303 -      xy<T> topRight() const {
   1.304 -        return top_right;
   1.305 -      }
   1.306 -
   1.307 -      ///Set the top right corner
   1.308 -
   1.309 -      ///Set the top right corner.
   1.310 -      ///It should only bee used for non-empty box.
   1.311 -      void topRight(xy<T> p) {
   1.312 -	top_right = p;
   1.313 -      }
   1.314 -
   1.315 -      ///Give back the bottom right corner
   1.316 -
   1.317 -      ///Give back the bottom right corner.
   1.318 -      ///If the bounding box is empty, then the return value is not defined.
   1.319 -      xy<T> bottomRight() const {
   1.320 -        return xy<T>(top_right.x,bottom_left.y);
   1.321 -      }
   1.322 -
   1.323 -      ///Set the bottom right corner
   1.324 -
   1.325 -      ///Set the bottom right corner.
   1.326 -      ///It should only bee used for non-empty box.
   1.327 -      void bottomRight(xy<T> p) {
   1.328 -	top_right.x = p.x;
   1.329 -	bottom_left.y = p.y;
   1.330 -      }
   1.331 - 
   1.332 -      ///Give back the top left corner
   1.333 -
   1.334 -      ///Give back the top left corner.
   1.335 -      ///If the bounding box is empty, then the return value is not defined.
   1.336 -      xy<T> topLeft() const {
   1.337 -        return xy<T>(bottom_left.x,top_right.y);
   1.338 -      }
   1.339 -
   1.340 -      ///Set the top left corner
   1.341 -
   1.342 -      ///Set the top left corner.
   1.343 -      ///It should only bee used for non-empty box.
   1.344 -      void topLeft(xy<T> p) {
   1.345 -	top_right.y = p.y;
   1.346 -	bottom_left.x = p.x;
   1.347 -      }
   1.348 -
   1.349 -      ///Give back the bottom of the box
   1.350 -
   1.351 -      ///Give back the bottom of the box.
   1.352 -      ///If the bounding box is empty, then the return value is not defined.
   1.353 -      T bottom() const {
   1.354 -        return bottom_left.y;
   1.355 -      }
   1.356 -
   1.357 -      ///Set the bottom of the box
   1.358 -
   1.359 -      ///Set the bottom of the box.
   1.360 -      ///It should only bee used for non-empty box.
   1.361 -      void bottom(T t) {
   1.362 -	bottom_left.y = t;
   1.363 -      }
   1.364 -
   1.365 -      ///Give back the top of the box
   1.366 -
   1.367 -      ///Give back the top of the box.
   1.368 -      ///If the bounding box is empty, then the return value is not defined.
   1.369 -      T top() const {
   1.370 -        return top_right.y;
   1.371 -      }
   1.372 -
   1.373 -      ///Set the top of the box
   1.374 -
   1.375 -      ///Set the top of the box.
   1.376 -      ///It should only bee used for non-empty box.
   1.377 -      void top(T t) {
   1.378 -	top_right.y = t;
   1.379 -      }
   1.380 -
   1.381 -      ///Give back the left side of the box
   1.382 -
   1.383 -      ///Give back the left side of the box.
   1.384 -      ///If the bounding box is empty, then the return value is not defined.
   1.385 -      T left() const {
   1.386 -        return bottom_left.x;
   1.387 -      }
   1.388 - 
   1.389 -      ///Set the left side of the box
   1.390 -
   1.391 -      ///Set the left side of the box.
   1.392 -      ///It should only bee used for non-empty box
   1.393 -      void left(T t) {
   1.394 -	bottom_left.x = t;
   1.395 -      }
   1.396 -
   1.397 -      /// Give back the right side of the box
   1.398 -
   1.399 -      /// Give back the right side of the box.
   1.400 -      ///If the bounding box is empty, then the return value is not defined.
   1.401 -      T right() const {
   1.402 -        return top_right.x;
   1.403 -      }
   1.404 -
   1.405 -      ///Set the right side of the box
   1.406 -
   1.407 -      ///Set the right side of the box.
   1.408 -      ///It should only bee used for non-empty box
   1.409 -      void right(T t) {
   1.410 -	top_right.x = t;
   1.411 -      }
   1.412 -
   1.413 -      ///Give back the height of the box
   1.414 -
   1.415 -      ///Give back the height of the box.
   1.416 -      ///If the bounding box is empty, then the return value is not defined.
   1.417 -      T height() const {
   1.418 -        return top_right.y-bottom_left.y;
   1.419 -      }
   1.420 -
   1.421 -      ///Give back the width of the box
   1.422 -
   1.423 -      ///Give back the width of the box.
   1.424 -      ///If the bounding box is empty, then the return value is not defined.
   1.425 -      T width() const {
   1.426 -        return top_right.x-bottom_left.x;
   1.427 -      }
   1.428 -
   1.429 -      ///Checks whether a point is inside a bounding box
   1.430 -      bool inside(const xy<T>& u){
   1.431 -        if (_empty)
   1.432 -          return false;
   1.433 -        else{
   1.434 -          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
   1.435 -              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
   1.436 -        }
   1.437 -      }
   1.438 -  
   1.439 -      ///Increments a bounding box with a point
   1.440 -      BoundingBox& add(const xy<T>& u){
   1.441 -        if (_empty){
   1.442 -          bottom_left=top_right=u;
   1.443 -          _empty = false;
   1.444 -        }
   1.445 -        else{
   1.446 -          if (bottom_left.x > u.x) bottom_left.x = u.x;
   1.447 -          if (bottom_left.y > u.y) bottom_left.y = u.y;
   1.448 -          if (top_right.x < u.x) top_right.x = u.x;
   1.449 -          if (top_right.y < u.y) top_right.y = u.y;
   1.450 -        }
   1.451 -        return *this;
   1.452 -      }
   1.453 -  
   1.454 -//       ///Sums a bounding box and a point
   1.455 -//       BoundingBox operator +(const xy<T>& u){
   1.456 -//         BoundingBox b = *this;
   1.457 -//         return b += u;
   1.458 -//       }
   1.459 -
   1.460 -      ///Increments a bounding box with another bounding box
   1.461 -      BoundingBox& add(const BoundingBox &u){
   1.462 -        if ( !u.empty() ){
   1.463 -          this->add(u.bottomLeft());
   1.464 -	  this->add(u.topRight());
   1.465 -        }
   1.466 -        return *this;
   1.467 -      }
   1.468 -  
   1.469 -      ///Sums two bounding boxes
   1.470 -      BoundingBox operator +(const BoundingBox& u){
   1.471 -        BoundingBox b = *this;
   1.472 -        return b.add(u);
   1.473 -      }
   1.474 -
   1.475 -
   1.476 -      ///Intersection of two bounding boxes
   1.477 -      BoundingBox operator &(const BoundingBox& u){
   1.478 -        BoundingBox b;
   1.479 -	b.bottom_left.x=std::max(this->bottom_left.x,u.bottom_left.x);
   1.480 -	b.bottom_left.y=std::max(this->bottom_left.y,u.bottom_left.y);
   1.481 -	b.top_right.x=std::min(this->top_right.x,u.top_right.x);
   1.482 -	b.top_right.y=std::min(this->top_right.y,u.top_right.y);
   1.483 -	b._empty = this->_empty || u._empty ||
   1.484 -	  b.bottom_left.x>top_right.x && b.bottom_left.y>top_right.y;
   1.485 -        return b;
   1.486 -      }
   1.487 -
   1.488 -    };//class Boundingbox
   1.489 -
   1.490 -
   1.491 -  ///Map of x-coordinates of an xy<>-map
   1.492 -
   1.493 -  ///\ingroup maps
   1.494 -  ///
   1.495 -  template<class M>
   1.496 -  class XMap 
   1.497 -  {
   1.498 -    M& _map;
   1.499 -  public:
   1.500 -
   1.501 -    typedef typename M::Value::Value Value;
   1.502 -    typedef typename M::Key Key;
   1.503 -    ///\e
   1.504 -    XMap(M& map) : _map(map) {}
   1.505 -    Value operator[](Key k) const {return _map[k].x;}
   1.506 -    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
   1.507 -  };
   1.508 -    
   1.509 -  ///Returns an \ref XMap class
   1.510 -
   1.511 -  ///This function just returns an \ref XMap class.
   1.512 -  ///
   1.513 -  ///\ingroup maps
   1.514 -  ///\relates XMap
   1.515 -  template<class M> 
   1.516 -  inline XMap<M> xMap(M &m) 
   1.517 -  {
   1.518 -    return XMap<M>(m);
   1.519 -  }
   1.520 -
   1.521 -  template<class M> 
   1.522 -  inline XMap<M> xMap(const M &m) 
   1.523 -  {
   1.524 -    return XMap<M>(m);
   1.525 -  }
   1.526 -
   1.527 -  ///Constant (read only) version of \ref XMap
   1.528 -
   1.529 -  ///\ingroup maps
   1.530 -  ///
   1.531 -  template<class M>
   1.532 -  class ConstXMap 
   1.533 -  {
   1.534 -    const M& _map;
   1.535 -  public:
   1.536 -
   1.537 -    typedef typename M::Value::Value Value;
   1.538 -    typedef typename M::Key Key;
   1.539 -    ///\e
   1.540 -    ConstXMap(const M &map) : _map(map) {}
   1.541 -    Value operator[](Key k) const {return _map[k].x;}
   1.542 -  };
   1.543 -    
   1.544 -  ///Returns a \ref ConstXMap class
   1.545 -
   1.546 -  ///This function just returns an \ref ConstXMap class.
   1.547 -  ///
   1.548 -  ///\ingroup maps
   1.549 -  ///\relates ConstXMap
   1.550 -  template<class M> 
   1.551 -  inline ConstXMap<M> xMap(const M &m) 
   1.552 -  {
   1.553 -    return ConstXMap<M>(m);
   1.554 -  }
   1.555 -
   1.556 -  ///Map of y-coordinates of an xy<>-map
   1.557 -    
   1.558 -  ///\ingroup maps
   1.559 -  ///
   1.560 -  template<class M>
   1.561 -  class YMap 
   1.562 -  {
   1.563 -    M& _map;
   1.564 -  public:
   1.565 -
   1.566 -    typedef typename M::Value::Value Value;
   1.567 -    typedef typename M::Key Key;
   1.568 -    ///\e
   1.569 -    YMap(M& map) : _map(map) {}
   1.570 -    Value operator[](Key k) const {return _map[k].y;}
   1.571 -    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
   1.572 -  };
   1.573 -
   1.574 -  ///Returns an \ref YMap class
   1.575 -
   1.576 -  ///This function just returns an \ref YMap class.
   1.577 -  ///
   1.578 -  ///\ingroup maps
   1.579 -  ///\relates YMap
   1.580 -  template<class M> 
   1.581 -  inline YMap<M> yMap(M &m) 
   1.582 -  {
   1.583 -    return YMap<M>(m);
   1.584 -  }
   1.585 -
   1.586 -  template<class M> 
   1.587 -  inline YMap<M> yMap(const M &m) 
   1.588 -  {
   1.589 -    return YMap<M>(m);
   1.590 -  }
   1.591 -
   1.592 -  ///Constant (read only) version of \ref YMap
   1.593 -
   1.594 -  ///\ingroup maps
   1.595 -  ///
   1.596 -  template<class M>
   1.597 -  class ConstYMap 
   1.598 -  {
   1.599 -    const M& _map;
   1.600 -  public:
   1.601 -
   1.602 -    typedef typename M::Value::Value Value;
   1.603 -    typedef typename M::Key Key;
   1.604 -    ///\e
   1.605 -    ConstYMap(const M &map) : _map(map) {}
   1.606 -    Value operator[](Key k) const {return _map[k].y;}
   1.607 -  };
   1.608 -    
   1.609 -  ///Returns a \ref ConstYMap class
   1.610 -
   1.611 -  ///This function just returns an \ref ConstYMap class.
   1.612 -  ///
   1.613 -  ///\ingroup maps
   1.614 -  ///\relates ConstYMap
   1.615 -  template<class M> 
   1.616 -  inline ConstYMap<M> yMap(const M &m) 
   1.617 -  {
   1.618 -    return ConstYMap<M>(m);
   1.619 -  }
   1.620 -
   1.621 -
   1.622 -  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
   1.623 -
   1.624 -  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
   1.625 -  ///\ingroup maps
   1.626 -  ///
   1.627 -  template<class M>
   1.628 -  class NormSquareMap 
   1.629 -  {
   1.630 -    const M& _map;
   1.631 -  public:
   1.632 -
   1.633 -    typedef typename M::Value::Value Value;
   1.634 -    typedef typename M::Key Key;
   1.635 -    ///\e
   1.636 -    NormSquareMap(const M &map) : _map(map) {}
   1.637 -    Value operator[](Key k) const {return _map[k].normSquare();}
   1.638 -  };
   1.639 -    
   1.640 -  ///Returns a \ref NormSquareMap class
   1.641 -
   1.642 -  ///This function just returns an \ref NormSquareMap class.
   1.643 -  ///
   1.644 -  ///\ingroup maps
   1.645 -  ///\relates NormSquareMap
   1.646 -  template<class M> 
   1.647 -  inline NormSquareMap<M> normSquareMap(const M &m) 
   1.648 -  {
   1.649 -    return NormSquareMap<M>(m);
   1.650 -  }
   1.651 -
   1.652 -  /// @}
   1.653 -
   1.654 -
   1.655 -} //namespace lemon
   1.656 -
   1.657 -#endif //LEMON_XY_H