src/lemon/radix_heap.h
changeset 1331 7e93d3f0406d
parent 1205 a9a3354b01d4
child 1336 fd5fd79123fd
     1.1 --- a/src/lemon/radix_heap.h	Sat Apr 09 19:27:48 2005 +0000
     1.2 +++ b/src/lemon/radix_heap.h	Sat Apr 09 19:30:49 2005 +0000
     1.3 @@ -1,5 +1,5 @@
     1.4  /* -*- C++ -*-
     1.5 - * src/lemon/bin_heap.h - Part of LEMON, a generic C++ optimization library
     1.6 + * src/lemon/radix_heap.h - Part of LEMON, a generic C++ optimization library
     1.7   *
     1.8   * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.9   * (Egervary Combinatorial Optimization Research Group, EGRES).
    1.10 @@ -30,39 +30,54 @@
    1.11    /// \addtogroup auxdat
    1.12    /// @{
    1.13  
    1.14 -  /// A Radix Heap implementation.
    1.15 -  
    1.16 -  ///\todo Please document...
    1.17 -  ///
    1.18 -  ///\sa BinHeap
    1.19 -  ///\sa Dijkstra
    1.20 +  /// \brief Exception thrown by RadixHeap.
    1.21 +  ///  
    1.22 +  /// This Exception is thrown when a smaller priority
    1.23 +  /// is inserted into the \e RadixHeap then the last time erased.
    1.24 +  /// \see RadixHeap
    1.25 +  /// \author Balazs Dezso
    1.26  
    1.27 -  class UnderFlowPriorityException : public RuntimeError {
    1.28 +  class UnderFlowPriorityError : public RuntimeError {
    1.29    public:
    1.30      virtual const char* exceptionName() const {
    1.31 -      return "lemon::UnderFlowPriorityException";
    1.32 +      return "lemon::UnderFlowPriorityError";
    1.33      }  
    1.34    };
    1.35  
    1.36 +  /// \brief A Radix Heap implementation.
    1.37 +  ///
    1.38 +  /// This class implements the \e radix \e heap data structure. A \e heap
    1.39 +  /// is a data structure for storing items with specified values called \e
    1.40 +  /// priorities in such a way that finding the item with minimum priority is
    1.41 +  /// efficient. This heap type can store only items with \e int priority.
    1.42 +  /// In a heap one can change the priority of an item, add or erase an 
    1.43 +  /// item, but the priority cannot be decreased under the last removed 
    1.44 +  /// item's priority.
    1.45 +  ///
    1.46 +  /// \param _Item Type of the items to be stored.  
    1.47 +  /// \param _ItemIntMap A read and writable Item int map, used internally
    1.48 +  /// to handle the cross references.
    1.49 +  ///
    1.50 +  /// \see BinHeap
    1.51 +  /// \see Dijkstra
    1.52 +  /// \author Balazs Dezso
    1.53 +
    1.54    template <typename _Item, typename _ItemIntMap>
    1.55    class RadixHeap {
    1.56  
    1.57    public:
    1.58      typedef _Item Item;
    1.59 -    // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
    1.60      typedef int Prio;
    1.61      typedef _ItemIntMap ItemIntMap;
    1.62  
    1.63 -    /**
    1.64 -     * Each Item element have a state associated to it. It may be "in heap",
    1.65 -     * "pre heap" or "post heap". The later two are indifferent from the
    1.66 -     * heap's point of view, but may be useful to the user.
    1.67 -     *
    1.68 -     * The ItemIntMap _should_ be initialized in such way, that it maps
    1.69 -     * PRE_HEAP (-1) to any element to be put in the heap...
    1.70 -     */
    1.71 -    ///\todo it is used nowhere
    1.72 +    /// \brief Type to represent the items states.
    1.73      ///
    1.74 +    /// Each Item element have a state associated to it. It may be "in heap",
    1.75 +    /// "pre heap" or "post heap". The later two are indifferent from the
    1.76 +    /// heap's point of view, but may be useful to the user.
    1.77 +    ///
    1.78 +    /// The ItemIntMap _should_ be initialized in such way, that it maps
    1.79 +    /// PRE_HEAP (-1) to any element to be put in the heap...
    1.80      enum state_enum {
    1.81        IN_HEAP = 0,
    1.82        PRE_HEAP = -1,
    1.83 @@ -91,13 +106,26 @@
    1.84  
    1.85  
    1.86    public:
    1.87 -    ///\e
    1.88 +    /// \brief The constructor.
    1.89 +    ///
    1.90 +    /// The constructor.
    1.91 +    /// \param _iim should be given to the constructor, since it is used
    1.92 +    /// internally to handle the cross references. The value of the map
    1.93 +    /// should be PRE_HEAP (-1) for each element.
    1.94      explicit RadixHeap(ItemIntMap &_iim) : iim(_iim) {
    1.95        boxes.push_back(RadixBox(0, 1));
    1.96        boxes.push_back(RadixBox(1, 1));
    1.97      }
    1.98  
    1.99 -    ///\e
   1.100 +    /// \brief The constructor.
   1.101 +    ///
   1.102 +    /// The constructor.
   1.103 +    ///
   1.104 +    /// \param _iim It should be given to the constructor, since it is used
   1.105 +    /// internally to handle the cross references. The value of the map
   1.106 +    /// should be PRE_HEAP (-1) for each element.
   1.107 +    ///
   1.108 +    /// \param capacity It determines the initial capacity of the heap. 
   1.109      RadixHeap(ItemIntMap &_iim, int capacity) : iim(_iim) {
   1.110        boxes.push_back(RadixBox(0, 1));
   1.111        boxes.push_back(RadixBox(1, 1));
   1.112 @@ -106,9 +134,13 @@
   1.113        }
   1.114      }
   1.115  
   1.116 -    ///\e
   1.117 +    /// The number of items stored in the heap.
   1.118 +    ///
   1.119 +    /// \brief Returns the number of items stored in the heap.
   1.120      int size() const { return data.size(); }
   1.121 -    ///\e
   1.122 +    /// \brief Checks if the heap stores no items.
   1.123 +    ///
   1.124 +    /// Returns \c true if and only if the heap stores no items.
   1.125      bool empty() const { return data.empty(); }
   1.126  
   1.127    private:
   1.128 @@ -183,7 +215,7 @@
   1.129      /// \brief Find up the proper box for the item with the given prio.
   1.130      int findDown(int start, int prio) {
   1.131        while (upper(start, prio)) {
   1.132 -	if (--start < 0) throw UnderFlowPriorityException();
   1.133 +	if (--start < 0) throw UnderFlowPriorityError();
   1.134        }
   1.135        return start;
   1.136      }
   1.137 @@ -207,7 +239,6 @@
   1.138      /// \brief Rearrange the items of the heap and makes the 
   1.139      /// first box not empty.
   1.140      void moveDown() {
   1.141 -      //      print(); printf("moveDown\n"); fflush(stdout);       
   1.142        int box = findFirst();
   1.143        if (box == 0) return;
   1.144        int min = minValue(box);
   1.145 @@ -241,9 +272,12 @@
   1.146  
   1.147    public:
   1.148  
   1.149 -    ///\e
   1.150 +    /// \brief Insert an item into the heap with the given heap.
   1.151 +    ///    
   1.152 +    /// Adds \c i to the heap with priority \c p. 
   1.153 +    /// \param i The item to insert.
   1.154 +    /// \param p The priority of the item.
   1.155      void push(const Item &i, const Prio &p) {
   1.156 -      fflush(stdout);
   1.157        int n = data.size();
   1.158        iim.set(i, n);
   1.159        data.push_back(RadixItem(i, p));
   1.160 @@ -252,38 +286,43 @@
   1.161        }
   1.162        int box = findDown(boxes.size() - 1, p);
   1.163        insert(box, n);
   1.164 -      //      printf("Push %d\n", p);
   1.165 -      //print();
   1.166      }
   1.167  
   1.168 -    ///\e
   1.169 +    /// \brief Returns the item with minimum priority.
   1.170 +    ///
   1.171 +    /// This method returns the item with minimum priority.  
   1.172 +    /// \pre The heap must be nonempty.  
   1.173      Item top() const {
   1.174 -      //      print(); printf("top\n");  fflush(stdout);
   1.175        const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
   1.176        return data[boxes[0].first].item;
   1.177 -      //      print(); printf("top_end\n");  fflush(stdout);
   1.178      }
   1.179  
   1.180 -    /// Returns the prio of the top element of the heap.
   1.181 +    /// \brief Returns the minimum priority.
   1.182 +    ///
   1.183 +    /// It returns the minimum priority.
   1.184 +    /// \pre The heap must be nonempty.
   1.185      Prio prio() const {
   1.186 -      //      print(); printf("prio\n"); fflush(stdout);
   1.187        const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown();
   1.188        return data[boxes[0].first].prio;
   1.189       }
   1.190  
   1.191 -    ///\e
   1.192 +    /// \brief Deletes the item with minimum priority.
   1.193 +    ///
   1.194 +    /// This method deletes the item with minimum priority.
   1.195 +    /// \pre The heap must be non-empty.  
   1.196      void pop() {
   1.197 -      //      print(); printf("pop\n"); fflush(stdout);
   1.198        moveDown();
   1.199        int index = boxes[0].first;
   1.200        iim[data[index].item] = POST_HEAP;
   1.201        remove(index);
   1.202        relocate_last(index);
   1.203 -      //      printf("Pop \n");
   1.204 -      //print();
   1.205      }
   1.206  
   1.207 -    ///\e
   1.208 +    /// \brief Deletes \c i from the heap.
   1.209 +    ///
   1.210 +    /// This method deletes item \c i from the heap, if \c i was
   1.211 +    /// already stored in the heap.
   1.212 +    /// \param i The item to erase. 
   1.213      void erase(const Item &i) {
   1.214        int index = iim[i];
   1.215        iim[i] = POST_HEAP;
   1.216 @@ -291,13 +330,24 @@
   1.217        relocate_last(index);
   1.218     }
   1.219  
   1.220 -    ///\e
   1.221 +    /// \brief Returns the priority of \c i.
   1.222 +    ///
   1.223 +    /// This function returns the priority of item \c i.  
   1.224 +    /// \pre \c i must be in the heap.
   1.225 +    /// \param i The item.
   1.226      Prio operator[](const Item &i) const {
   1.227        int idx = iim[i];
   1.228        return data[idx].prio;
   1.229      }
   1.230  
   1.231 -    ///\e
   1.232 +    /// \brief \c i gets to the heap with priority \c p independently 
   1.233 +    /// if \c i was already there.
   1.234 +    ///
   1.235 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   1.236 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   1.237 +    /// It may throw an \e UnderFlowPriorityException. 
   1.238 +    /// \param i The item.
   1.239 +    /// \param p The priority.
   1.240      void set(const Item &i, const Prio &p) {
   1.241        int idx = iim[i];
   1.242        if( idx < 0 ) {
   1.243 @@ -312,39 +362,47 @@
   1.244        }
   1.245      }
   1.246  
   1.247 -    ///\e
   1.248 +
   1.249 +    /// \brief Decreases the priority of \c i to \c p.
   1.250 +    ///
   1.251 +    /// This method decreases the priority of item \c i to \c p.
   1.252 +    /// \pre \c i must be stored in the heap with priority at least \c p, and
   1.253 +    /// \c should be greater then the last removed item's priority.
   1.254 +    /// \param i The item.
   1.255 +    /// \param p The priority.
   1.256      void decrease(const Item &i, const Prio &p) {
   1.257 -      //      print(); printf("decrease\n"); fflush(stdout);
   1.258        int idx = iim[i];
   1.259        data[idx].prio = p;
   1.260        bubble_down(idx);
   1.261      }
   1.262  
   1.263 -    ///\e
   1.264 +    /// \brief Increases the priority of \c i to \c p.
   1.265 +    ///
   1.266 +    /// This method sets the priority of item \c i to \c p. 
   1.267 +    /// \pre \c i must be stored in the heap with priority at most \c
   1.268 +    /// p relative to \c Compare.
   1.269 +    /// \param i The item.
   1.270 +    /// \param p The priority.
   1.271      void increase(const Item &i, const Prio &p) {
   1.272        int idx = iim[i];
   1.273        data[idx].prio = p;
   1.274        bubble_up(idx);
   1.275      }
   1.276  
   1.277 -    ///\e
   1.278 +    /// \brief Returns if \c item is in, has already been in, or has 
   1.279 +    /// never been in the heap.
   1.280 +    ///
   1.281 +    /// This method returns PRE_HEAP if \c item has never been in the
   1.282 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.283 +    /// otherwise. In the latter case it is possible that \c item will
   1.284 +    /// get back to the heap again.
   1.285 +    /// \param i The item.
   1.286      state_enum state(const Item &i) const {
   1.287        int s = iim[i];
   1.288        if( s >= 0 ) s = 0;
   1.289        return state_enum(s);
   1.290      }
   1.291  
   1.292 -//     void print() const {
   1.293 -//       for (int i = 0; i < boxes.size(); ++i) {
   1.294 -// 	printf("(%d, %d) ", boxes[i].min, boxes[i].size);
   1.295 -// 	for (int k = boxes[i].first; k != -1; k = data[k].next) {
   1.296 -// 	  printf("%d ", data[k].prio);
   1.297 -// 	}
   1.298 -// 	printf("\n");
   1.299 -//       }
   1.300 -//       fflush(stdout);
   1.301 -//     }
   1.302 -
   1.303    }; // class RadixHeap
   1.304  
   1.305