src/lemon/bfs.h
changeset 921 818510fa3d99
parent 911 89a4fbb99cad
child 946 c94ef40a22ce
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/lemon/bfs.h	Wed Sep 29 15:30:04 2004 +0000
     1.3 @@ -0,0 +1,286 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/bfs.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_BFS_H
    1.21 +#define LEMON_BFS_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +///\file
    1.25 +///\brief Bfs algorithm.
    1.26 +///
    1.27 +///\todo Revise Manual.
    1.28 +
    1.29 +#include <lemon/bin_heap.h>
    1.30 +#include <lemon/invalid.h>
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +/// \addtogroup flowalgs
    1.35 +/// @{
    1.36 +
    1.37 +  ///%BFS algorithm class.
    1.38 +
    1.39 +  ///This class provides an efficient implementation of %BFS algorithm.
    1.40 +  ///\param GR The graph type the algorithm runs on.
    1.41 +  ///This class does the same as Dijkstra does with constant 1 edge length,
    1.42 +  ///but it is faster.
    1.43 +  ///
    1.44 +  ///\author Alpar Juttner
    1.45 +
    1.46 +#ifdef DOXYGEN
    1.47 +  template <typename GR>
    1.48 +#else
    1.49 +  template <typename GR>
    1.50 +#endif
    1.51 +  class Bfs{
    1.52 +  public:
    1.53 +    ///The type of the underlying graph.
    1.54 +    typedef GR Graph;
    1.55 +    ///\e
    1.56 +    typedef typename Graph::Node Node;
    1.57 +    ///\e
    1.58 +    typedef typename Graph::NodeIt NodeIt;
    1.59 +    ///\e
    1.60 +    typedef typename Graph::Edge Edge;
    1.61 +    ///\e
    1.62 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.63 +    
    1.64 +    ///\brief The type of the map that stores the last
    1.65 +    ///edges of the shortest paths.
    1.66 +    typedef typename Graph::template NodeMap<Edge> PredMap;
    1.67 +    ///\brief The type of the map that stores the last but one
    1.68 +    ///nodes of the shortest paths.
    1.69 +    typedef typename Graph::template NodeMap<Node> PredNodeMap;
    1.70 +    ///The type of the map that stores the dists of the nodes.
    1.71 +    typedef typename Graph::template NodeMap<int> DistMap;
    1.72 +
    1.73 +  private:
    1.74 +    /// Pointer to the underlying graph.
    1.75 +    const Graph *G;
    1.76 +    ///Pointer to the map of predecessors edges.
    1.77 +    PredMap *predecessor;
    1.78 +    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
    1.79 +    bool local_predecessor;
    1.80 +    ///Pointer to the map of predecessors nodes.
    1.81 +    PredNodeMap *pred_node;
    1.82 +    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
    1.83 +    bool local_pred_node;
    1.84 +    ///Pointer to the map of distances.
    1.85 +    DistMap *distance;
    1.86 +    ///Indicates if \ref distance is locally allocated (\c true) or not.
    1.87 +    bool local_distance;
    1.88 +
    1.89 +    ///The source node of the last execution.
    1.90 +    Node source;
    1.91 +
    1.92 +
    1.93 +    ///Initializes the maps.
    1.94 +    void init_maps() 
    1.95 +    {
    1.96 +      if(!predecessor) {
    1.97 +	local_predecessor = true;
    1.98 +	predecessor = new PredMap(*G);
    1.99 +      }
   1.100 +      if(!pred_node) {
   1.101 +	local_pred_node = true;
   1.102 +	pred_node = new PredNodeMap(*G);
   1.103 +      }
   1.104 +      if(!distance) {
   1.105 +	local_distance = true;
   1.106 +	distance = new DistMap(*G);
   1.107 +      }
   1.108 +    }
   1.109 +    
   1.110 +  public :    
   1.111 +    ///Constructor.
   1.112 +    
   1.113 +    ///\param _G the graph the algorithm will run on.
   1.114 +    ///
   1.115 +    Bfs(const Graph& _G) :
   1.116 +      G(&_G),
   1.117 +      predecessor(NULL), local_predecessor(false),
   1.118 +      pred_node(NULL), local_pred_node(false),
   1.119 +      distance(NULL), local_distance(false)
   1.120 +    { }
   1.121 +    
   1.122 +    ///Destructor.
   1.123 +    ~Bfs() 
   1.124 +    {
   1.125 +      if(local_predecessor) delete predecessor;
   1.126 +      if(local_pred_node) delete pred_node;
   1.127 +      if(local_distance) delete distance;
   1.128 +    }
   1.129 +
   1.130 +    ///Sets the map storing the predecessor edges.
   1.131 +
   1.132 +    ///Sets the map storing the predecessor edges.
   1.133 +    ///If you don't use this function before calling \ref run(),
   1.134 +    ///it will allocate one. The destuctor deallocates this
   1.135 +    ///automatically allocated map, of course.
   1.136 +    ///\return <tt> (*this) </tt>
   1.137 +    Bfs &setPredMap(PredMap &m) 
   1.138 +    {
   1.139 +      if(local_predecessor) {
   1.140 +	delete predecessor;
   1.141 +	local_predecessor=false;
   1.142 +      }
   1.143 +      predecessor = &m;
   1.144 +      return *this;
   1.145 +    }
   1.146 +
   1.147 +    ///Sets the map storing the predecessor nodes.
   1.148 +
   1.149 +    ///Sets the map storing the predecessor nodes.
   1.150 +    ///If you don't use this function before calling \ref run(),
   1.151 +    ///it will allocate one. The destuctor deallocates this
   1.152 +    ///automatically allocated map, of course.
   1.153 +    ///\return <tt> (*this) </tt>
   1.154 +    Bfs &setPredNodeMap(PredNodeMap &m) 
   1.155 +    {
   1.156 +      if(local_pred_node) {
   1.157 +	delete pred_node;
   1.158 +	local_pred_node=false;
   1.159 +      }
   1.160 +      pred_node = &m;
   1.161 +      return *this;
   1.162 +    }
   1.163 +
   1.164 +    ///Sets the map storing the distances calculated by the algorithm.
   1.165 +
   1.166 +    ///Sets the map storing the distances calculated by the algorithm.
   1.167 +    ///If you don't use this function before calling \ref run(),
   1.168 +    ///it will allocate one. The destuctor deallocates this
   1.169 +    ///automatically allocated map, of course.
   1.170 +    ///\return <tt> (*this) </tt>
   1.171 +    Bfs &setDistMap(DistMap &m) 
   1.172 +    {
   1.173 +      if(local_distance) {
   1.174 +	delete distance;
   1.175 +	local_distance=false;
   1.176 +      }
   1.177 +      distance = &m;
   1.178 +      return *this;
   1.179 +    }
   1.180 +    
   1.181 +  ///Runs %BFS algorithm from node \c s.
   1.182 +
   1.183 +  ///This method runs the %BFS algorithm from a root node \c s
   1.184 +  ///in order to
   1.185 +  ///compute a
   1.186 +  ///shortest path to each node. The algorithm computes
   1.187 +  ///- The %BFS tree.
   1.188 +  ///- The distance of each node from the root.
   1.189 + 
   1.190 +    void run(Node s) {
   1.191 +      
   1.192 +      init_maps();
   1.193 +      
   1.194 +      source = s;
   1.195 +      
   1.196 +      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   1.197 +	predecessor->set(u,INVALID);
   1.198 +	pred_node->set(u,INVALID);
   1.199 +      }
   1.200 +      
   1.201 +      int N=G->nodeNum();
   1.202 +      std::vector<typename Graph::Node> Q(N);
   1.203 +      int Qh=0;
   1.204 +      int Qt=0;
   1.205 +      
   1.206 +      Q[Qh++]=source;
   1.207 +      distance->set(s, 0);
   1.208 +      do {
   1.209 +	Node m;
   1.210 +	Node n=Q[Qt++];
   1.211 +	int d= (*distance)[n]+1;
   1.212 +	
   1.213 +	for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   1.214 +	  if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) {
   1.215 +	    Q[Qh++]=m;
   1.216 +	    predecessor->set(m,e);
   1.217 +	    pred_node->set(m,n);
   1.218 +	    distance->set(m,d);
   1.219 +	  }
   1.220 +      } while(Qt!=Qh);
   1.221 +    }
   1.222 +    
   1.223 +    ///The distance of a node from the root.
   1.224 +
   1.225 +    ///Returns the distance of a node from the root.
   1.226 +    ///\pre \ref run() must be called before using this function.
   1.227 +    ///\warning If node \c v in unreachable from the root the return value
   1.228 +    ///of this funcion is undefined.
   1.229 +    int dist(Node v) const { return (*distance)[v]; }
   1.230 +
   1.231 +    ///Returns the 'previous edge' of the %BFS path tree.
   1.232 +
   1.233 +    ///For a node \c v it returns the 'previous edge' of the %BFS tree,
   1.234 +    ///i.e. it returns the last edge of a shortest path from the root to \c
   1.235 +    ///v. It is \ref INVALID
   1.236 +    ///if \c v is unreachable from the root or if \c v=s. The
   1.237 +    ///%BFS tree used here is equal to the %BFS tree used in
   1.238 +    ///\ref predNode(Node v).  \pre \ref run() must be called before using
   1.239 +    ///this function.
   1.240 +    Edge pred(Node v) const { return (*predecessor)[v]; }
   1.241 +
   1.242 +    ///Returns the 'previous node' of the %BFS tree.
   1.243 +
   1.244 +    ///For a node \c v it returns the 'previous node' on the %BFS tree,
   1.245 +    ///i.e. it returns the last but one node from a shortest path from the
   1.246 +    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   1.247 +    ///\c v=s. The shortest path tree used here is equal to the %BFS
   1.248 +    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   1.249 +    ///using this function.
   1.250 +    Node predNode(Node v) const { return (*pred_node)[v]; }
   1.251 +    
   1.252 +    ///Returns a reference to the NodeMap of distances.
   1.253 +    
   1.254 +    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.255 +    ///be called before using this function.
   1.256 +    const DistMap &distMap() const { return *distance;}
   1.257 + 
   1.258 +    ///Returns a reference to the %BFS tree map.
   1.259 +
   1.260 +    ///Returns a reference to the NodeMap of the edges of the
   1.261 +    ///%BFS tree.
   1.262 +    ///\pre \ref run() must be called before using this function.
   1.263 +    const PredMap &predMap() const { return *predecessor;}
   1.264 + 
   1.265 +    ///Returns a reference to the map of last but one nodes of shortest paths.
   1.266 +
   1.267 +    ///Returns a reference to the NodeMap of the last but one nodes on the
   1.268 +    ///%BFS tree.
   1.269 +    ///\pre \ref run() must be called before using this function.
   1.270 +    const PredNodeMap &predNodeMap() const { return *pred_node;}
   1.271 +
   1.272 +    ///Checks if a node is reachable from the root.
   1.273 +
   1.274 +    ///Returns \c true if \c v is reachable from the root.
   1.275 +    ///\note The root node is reported to be reached!
   1.276 +    ///
   1.277 +    ///\pre \ref run() must be called before using this function.
   1.278 +    ///
   1.279 +    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   1.280 +    
   1.281 +  };
   1.282 +  
   1.283 +/// @}
   1.284 +  
   1.285 +} //END OF NAMESPACE LEMON
   1.286 +
   1.287 +#endif
   1.288 +
   1.289 +