src/lemon/kruskal.h
changeset 921 818510fa3d99
parent 906 17f31d280385
child 986 e997802b855c
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/lemon/kruskal.h	Wed Sep 29 15:30:04 2004 +0000
     1.3 @@ -0,0 +1,348 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_KRUSKAL_H
    1.21 +#define LEMON_KRUSKAL_H
    1.22 +
    1.23 +#include <algorithm>
    1.24 +#include <lemon/unionfind.h>
    1.25 +
    1.26 +/**
    1.27 +@defgroup spantree Minimum Cost Spanning Tree Algorithms
    1.28 +@ingroup galgs
    1.29 +\brief This group containes the algorithms for finding a minimum cost spanning
    1.30 +tree in a graph
    1.31 +
    1.32 +This group containes the algorithms for finding a minimum cost spanning
    1.33 +tree in a graph
    1.34 +*/
    1.35 +
    1.36 +///\ingroup spantree
    1.37 +///\file
    1.38 +///\brief Kruskal's algorithm to compute a minimum cost tree
    1.39 +///
    1.40 +///Kruskal's algorithm to compute a minimum cost tree.
    1.41 +
    1.42 +namespace lemon {
    1.43 +
    1.44 +  /// \addtogroup spantree
    1.45 +  /// @{
    1.46 +
    1.47 +  /// Kruskal's algorithm to find a minimum cost tree of a graph.
    1.48 +
    1.49 +  /// This function runs Kruskal's algorithm to find a minimum cost tree.
    1.50 +  /// \param G The graph the algorithm runs on. The algorithm considers the
    1.51 +  /// graph to be undirected, the direction of the edges are not used.
    1.52 +  ///
    1.53 +  /// \param in This object is used to describe the edge costs. It must
    1.54 +  /// be an STL compatible 'Forward Container'
    1.55 +  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    1.56 +  /// where X is the type of the costs. It must contain every edge in
    1.57 +  /// cost-ascending order.
    1.58 +  ///\par
    1.59 +  /// For the sake of simplicity, there is a helper class KruskalMapInput,
    1.60 +  /// which converts a
    1.61 +  /// simple edge map to an input of this form. Alternatively, you can use
    1.62 +  /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    1.63 +  /// the edge costs are given by an edge map.
    1.64 +  ///
    1.65 +  /// \retval out This must be a writable \c bool edge map.
    1.66 +  /// After running the algorithm
    1.67 +  /// this will contain the found minimum cost spanning tree: the value of an
    1.68 +  /// edge will be set to \c true if it belongs to the tree, otherwise it will
    1.69 +  /// be set to \c false. The value of each edge will be set exactly once.
    1.70 +  ///
    1.71 +  /// \return The cost of the found tree.
    1.72 +
    1.73 +  template <class GR, class IN, class OUT>
    1.74 +  typename IN::value_type::second_type
    1.75 +  kruskal(GR const& G, IN const& in, 
    1.76 +		 OUT& out)
    1.77 +  {
    1.78 +    typedef typename IN::value_type::second_type EdgeCost;
    1.79 +    typedef typename GR::template NodeMap<int> NodeIntMap;
    1.80 +    typedef typename GR::Node Node;
    1.81 +
    1.82 +    NodeIntMap comp(G, -1);
    1.83 +    UnionFind<Node,NodeIntMap> uf(comp); 
    1.84 +      
    1.85 +    EdgeCost tot_cost = 0;
    1.86 +    for (typename IN::const_iterator p = in.begin(); 
    1.87 +	 p!=in.end(); ++p ) {
    1.88 +      if ( uf.join(G.head((*p).first),
    1.89 +		   G.tail((*p).first)) ) {
    1.90 +	out.set((*p).first, true);
    1.91 +	tot_cost += (*p).second;
    1.92 +      }
    1.93 +      else {
    1.94 +	out.set((*p).first, false);
    1.95 +      }
    1.96 +    }
    1.97 +    return tot_cost;
    1.98 +  }
    1.99 +
   1.100 +  /* A work-around for running Kruskal with const-reference bool maps... */
   1.101 +
   1.102 +  /// Helper class for calling kruskal with "constant" output map.
   1.103 +
   1.104 +  /// Helper class for calling kruskal with output maps constructed
   1.105 +  /// on-the-fly.
   1.106 +  ///
   1.107 +  /// A typical examle is the following call:
   1.108 +  /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
   1.109 +  /// Here, the third argument is a temporary object (which wraps around an
   1.110 +  /// iterator with a writable bool map interface), and thus by rules of C++
   1.111 +  /// is a \c const object. To enable call like this exist this class and
   1.112 +  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   1.113 +  /// third argument.
   1.114 +  template<class Map>
   1.115 +  class NonConstMapWr {
   1.116 +    const Map &m;
   1.117 +  public:
   1.118 +    typedef typename Map::ValueType ValueType;
   1.119 +
   1.120 +    NonConstMapWr(const Map &_m) : m(_m) {}
   1.121 +
   1.122 +    template<class KeyType>
   1.123 +    void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
   1.124 +  };
   1.125 +
   1.126 +  template <class GR, class IN, class OUT>
   1.127 +  inline
   1.128 +  typename IN::value_type::second_type
   1.129 +  kruskal(GR const& G, IN const& edges, OUT const& out_map)
   1.130 +  {
   1.131 +    NonConstMapWr<OUT> map_wr(out_map);
   1.132 +    return kruskal(G, edges, map_wr);
   1.133 +  }  
   1.134 +
   1.135 +  /* ** ** Input-objects ** ** */
   1.136 +
   1.137 +  /// Kruskal input source.
   1.138 +
   1.139 +  /// Kruskal input source.
   1.140 +  ///
   1.141 +  /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   1.142 +  ///
   1.143 +  /// \sa makeKruskalMapInput()
   1.144 +  ///
   1.145 +  ///\param GR The type of the graph the algorithm runs on.
   1.146 +  ///\param Map An edge map containing the cost of the edges.
   1.147 +  ///\par
   1.148 +  ///The cost type can be any type satisfying
   1.149 +  ///the STL 'LessThan comparable'
   1.150 +  ///concept if it also has an operator+() implemented. (It is necessary for
   1.151 +  ///computing the total cost of the tree).
   1.152 +  ///
   1.153 +  template<class GR, class Map>
   1.154 +  class KruskalMapInput
   1.155 +    : public std::vector< std::pair<typename GR::Edge,
   1.156 +				    typename Map::ValueType> > {
   1.157 +    
   1.158 +  public:
   1.159 +    typedef std::vector< std::pair<typename GR::Edge,
   1.160 +				   typename Map::ValueType> > Parent;
   1.161 +    typedef typename Parent::value_type value_type;
   1.162 +
   1.163 +  private:
   1.164 +    class comparePair {
   1.165 +    public:
   1.166 +      bool operator()(const value_type& a,
   1.167 +		      const value_type& b) {
   1.168 +	return a.second < b.second;
   1.169 +      }
   1.170 +    };
   1.171 +
   1.172 +  public:
   1.173 +
   1.174 +    void sort() {
   1.175 +      std::sort(this->begin(), this->end(), comparePair());
   1.176 +    }
   1.177 +
   1.178 +    KruskalMapInput(GR const& G, Map const& m) {
   1.179 +      typedef typename GR::EdgeIt EdgeIt;
   1.180 +      
   1.181 +      for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
   1.182 +      sort();
   1.183 +    }
   1.184 +  };
   1.185 +
   1.186 +  /// Creates a KruskalMapInput object for \ref kruskal()
   1.187 +
   1.188 +  /// It makes is easier to use 
   1.189 +  /// \ref KruskalMapInput by making it unnecessary 
   1.190 +  /// to explicitly give the type of the parameters.
   1.191 +  ///
   1.192 +  /// In most cases you possibly
   1.193 +  /// want to use the function kruskalEdgeMap() instead.
   1.194 +  ///
   1.195 +  ///\param G The type of the graph the algorithm runs on.
   1.196 +  ///\param m An edge map containing the cost of the edges.
   1.197 +  ///\par
   1.198 +  ///The cost type can be any type satisfying the
   1.199 +  ///STL 'LessThan Comparable'
   1.200 +  ///concept if it also has an operator+() implemented. (It is necessary for
   1.201 +  ///computing the total cost of the tree).
   1.202 +  ///
   1.203 +  ///\return An appropriate input source for \ref kruskal().
   1.204 +  ///
   1.205 +  template<class GR, class Map>
   1.206 +  inline
   1.207 +  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
   1.208 +  {
   1.209 +    return KruskalMapInput<GR,Map>(G,m);
   1.210 +  }
   1.211 +  
   1.212 +  
   1.213 +
   1.214 +  /* ** ** Output-objects: simple writable bool maps ** ** */
   1.215 +  
   1.216 +
   1.217 +
   1.218 +  /// A writable bool-map that makes a sequence of "true" keys
   1.219 +
   1.220 +  /// A writable bool-map that creates a sequence out of keys that receives
   1.221 +  /// the value "true".
   1.222 +  ///
   1.223 +  /// \sa makeKruskalSequenceOutput()
   1.224 +  ///
   1.225 +  /// Very often, when looking for a min cost spanning tree, we want as
   1.226 +  /// output a container containing the edges of the found tree. For this
   1.227 +  /// purpose exist this class that wraps around an STL iterator with a
   1.228 +  /// writable bool map interface. When a key gets value "true" this key
   1.229 +  /// is added to sequence pointed by the iterator.
   1.230 +  ///
   1.231 +  /// A typical usage:
   1.232 +  /// \code
   1.233 +  /// std::vector<Graph::Edge> v;
   1.234 +  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   1.235 +  /// \endcode
   1.236 +  /// 
   1.237 +  /// For the most common case, when the input is given by a simple edge
   1.238 +  /// map and the output is a sequence of the tree edges, a special
   1.239 +  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   1.240 +  ///
   1.241 +  /// \warning Not a regular property map, as it doesn't know its KeyType
   1.242 +
   1.243 +  template<class Iterator>
   1.244 +  class KruskalSequenceOutput {
   1.245 +    mutable Iterator it;
   1.246 +
   1.247 +  public:
   1.248 +    typedef bool ValueType;
   1.249 +
   1.250 +    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   1.251 +
   1.252 +    template<typename KeyType>
   1.253 +    void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
   1.254 +  };
   1.255 +
   1.256 +  template<class Iterator>
   1.257 +  inline
   1.258 +  KruskalSequenceOutput<Iterator>
   1.259 +  makeKruskalSequenceOutput(Iterator it) {
   1.260 +    return KruskalSequenceOutput<Iterator>(it);
   1.261 +  }
   1.262 +
   1.263 +
   1.264 +
   1.265 +  /* ** ** Wrapper funtions ** ** */
   1.266 +
   1.267 +
   1.268 +
   1.269 +  /// \brief Wrapper function to kruskal().
   1.270 +  /// Input is from an edge map, output is a plain bool map.
   1.271 +  ///
   1.272 +  /// Wrapper function to kruskal().
   1.273 +  /// Input is from an edge map, output is a plain bool map.
   1.274 +  ///
   1.275 +  ///\param G The type of the graph the algorithm runs on.
   1.276 +  ///\param in An edge map containing the cost of the edges.
   1.277 +  ///\par
   1.278 +  ///The cost type can be any type satisfying the
   1.279 +  ///STL 'LessThan Comparable'
   1.280 +  ///concept if it also has an operator+() implemented. (It is necessary for
   1.281 +  ///computing the total cost of the tree).
   1.282 +  ///
   1.283 +  /// \retval out This must be a writable \c bool edge map.
   1.284 +  /// After running the algorithm
   1.285 +  /// this will contain the found minimum cost spanning tree: the value of an
   1.286 +  /// edge will be set to \c true if it belongs to the tree, otherwise it will
   1.287 +  /// be set to \c false. The value of each edge will be set exactly once.
   1.288 +  ///
   1.289 +  /// \return The cost of the found tree.
   1.290 +
   1.291 +  template <class GR, class IN, class RET>
   1.292 +  inline
   1.293 +  typename IN::ValueType
   1.294 +  kruskalEdgeMap(GR const& G,
   1.295 +		 IN const& in,
   1.296 +		 RET &out) {
   1.297 +    return kruskal(G,
   1.298 +		   KruskalMapInput<GR,IN>(G,in),
   1.299 +		   out);
   1.300 +  }
   1.301 +
   1.302 +  /// \brief Wrapper function to kruskal().
   1.303 +  /// Input is from an edge map, output is an STL Sequence.
   1.304 +  ///
   1.305 +  /// Wrapper function to kruskal().
   1.306 +  /// Input is from an edge map, output is an STL Sequence.
   1.307 +  ///
   1.308 +  ///\param G The type of the graph the algorithm runs on.
   1.309 +  ///\param in An edge map containing the cost of the edges.
   1.310 +  ///\par
   1.311 +  ///The cost type can be any type satisfying the
   1.312 +  ///STL 'LessThan Comparable'
   1.313 +  ///concept if it also has an operator+() implemented. (It is necessary for
   1.314 +  ///computing the total cost of the tree).
   1.315 +  ///
   1.316 +  /// \retval out This must be an iteraror of an STL Container with
   1.317 +  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   1.318 +  /// The algorithm copies the elements of the found tree into this sequence.
   1.319 +  /// For example, if we know that the spanning tree of the graph \c G has
   1.320 +  /// say 53 edges then
   1.321 +  /// we can put its edges into a STL vector \c tree with a code like this.
   1.322 +  /// \code
   1.323 +  /// std::vector<Edge> tree(53);
   1.324 +  /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   1.325 +  /// \endcode
   1.326 +  /// Or if we don't know in advance the size of the tree, we can write this.
   1.327 +  /// \code
   1.328 +  /// std::vector<Edge> tree;
   1.329 +  /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   1.330 +  /// \endcode
   1.331 +  ///
   1.332 +  /// \return The cost of the found tree.
   1.333 +  ///
   1.334 +  /// \bug its name does not follow the coding style.
   1.335 +
   1.336 +  template <class GR, class IN, class RET>
   1.337 +  inline
   1.338 +  typename IN::ValueType
   1.339 +  kruskalEdgeMap_IteratorOut(const GR& G,
   1.340 +			     const IN& in,
   1.341 +			     RET out)
   1.342 +  {
   1.343 +    KruskalSequenceOutput<RET> _out(out);
   1.344 +    return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
   1.345 +  }
   1.346 +
   1.347 +  /// @}
   1.348 +
   1.349 +} //namespace lemon
   1.350 +
   1.351 +#endif //LEMON_KRUSKAL_H