src/lemon/list_graph.h
changeset 921 818510fa3d99
parent 919 6153d9cf78c6
child 937 d4e911acef3d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/lemon/list_graph.h	Wed Sep 29 15:30:04 2004 +0000
     1.3 @@ -0,0 +1,1106 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_LIST_GRAPH_H
    1.21 +#define LEMON_LIST_GRAPH_H
    1.22 +
    1.23 +///\ingroup graphs
    1.24 +///\file
    1.25 +///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
    1.26 +
    1.27 +#include <vector>
    1.28 +#include <climits>
    1.29 +
    1.30 +#include <lemon/invalid.h>
    1.31 +
    1.32 +#include <lemon/map_registry.h>
    1.33 +#include <lemon/array_map.h>
    1.34 +
    1.35 +#include <lemon/sym_map.h>
    1.36 +
    1.37 +#include <lemon/map_defines.h>
    1.38 +
    1.39 +
    1.40 +namespace lemon {
    1.41 +
    1.42 +/// \addtogroup graphs
    1.43 +/// @{
    1.44 +
    1.45 +  ///A list graph class.
    1.46 +
    1.47 +  ///This is a simple and fast erasable graph implementation.
    1.48 +  ///
    1.49 +  ///It conforms to the
    1.50 +  ///\ref skeleton::ErasableGraph "ErasableGraph" concept.
    1.51 +  ///\sa skeleton::ErasableGraph.
    1.52 +  class ListGraph {
    1.53 +
    1.54 +    //Nodes are double linked.
    1.55 +    //The free nodes are only single linked using the "next" field.
    1.56 +    struct NodeT 
    1.57 +    {
    1.58 +      int first_in,first_out;
    1.59 +      int prev, next;
    1.60 +    };
    1.61 +    //Edges are double linked.
    1.62 +    //The free edges are only single linked using the "next_in" field.
    1.63 +    struct EdgeT 
    1.64 +    {
    1.65 +      int head, tail;
    1.66 +      int prev_in, prev_out;
    1.67 +      int next_in, next_out;
    1.68 +    };
    1.69 +
    1.70 +    std::vector<NodeT> nodes;
    1.71 +    //The first node
    1.72 +    int first_node;
    1.73 +    //The first free node
    1.74 +    int first_free_node;
    1.75 +    std::vector<EdgeT> edges;
    1.76 +    //The first free edge
    1.77 +    int first_free_edge;
    1.78 +    
    1.79 +  public:
    1.80 +    
    1.81 +    typedef ListGraph Graph;
    1.82 +    
    1.83 +    class Node;
    1.84 +    class Edge;
    1.85 +
    1.86 +    
    1.87 +  public:
    1.88 +
    1.89 +    class NodeIt;
    1.90 +    class EdgeIt;
    1.91 +    class OutEdgeIt;
    1.92 +    class InEdgeIt;
    1.93 +
    1.94 +    // Create map registries.
    1.95 +    CREATE_MAP_REGISTRIES;
    1.96 +    // Create node and edge maps.
    1.97 +    CREATE_MAPS(ArrayMap);
    1.98 +
    1.99 +  public:
   1.100 +
   1.101 +    ListGraph() 
   1.102 +      : nodes(), first_node(-1),
   1.103 +	first_free_node(-1), edges(), first_free_edge(-1) {}
   1.104 +
   1.105 +    ListGraph(const ListGraph &_g) 
   1.106 +      : nodes(_g.nodes), first_node(_g.first_node),
   1.107 +	first_free_node(_g.first_free_node), edges(_g.edges),
   1.108 +	first_free_edge(_g.first_free_edge) {}
   1.109 +    
   1.110 +    ///Number of nodes.
   1.111 +    int nodeNum() const { return nodes.size(); }
   1.112 +    ///Number of edges.
   1.113 +    int edgeNum() const { return edges.size(); }
   1.114 +
   1.115 +    ///Set the expected maximum number of edges.
   1.116 +
   1.117 +    ///With this function, it is possible to set the expected number of edges.
   1.118 +    ///The use of this fasten the building of the graph and makes
   1.119 +    ///it possible to avoid the superfluous memory allocation.
   1.120 +    void reserveEdge(int n) { edges.reserve(n); };
   1.121 +    
   1.122 +    /// Maximum node ID.
   1.123 +    
   1.124 +    /// Maximum node ID.
   1.125 +    ///\sa id(Node)
   1.126 +    int maxNodeId() const { return nodes.size()-1; } 
   1.127 +    /// Maximum edge ID.
   1.128 +    
   1.129 +    /// Maximum edge ID.
   1.130 +    ///\sa id(Edge)
   1.131 +    int maxEdgeId() const { return edges.size()-1; }
   1.132 +
   1.133 +    Node tail(Edge e) const { return edges[e.n].tail; }
   1.134 +    Node head(Edge e) const { return edges[e.n].head; }
   1.135 +
   1.136 +    NodeIt& first(NodeIt& v) const { 
   1.137 +      v=NodeIt(*this); return v; }
   1.138 +    EdgeIt& first(EdgeIt& e) const { 
   1.139 +      e=EdgeIt(*this); return e; }
   1.140 +    OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   1.141 +      e=OutEdgeIt(*this,v); return e; }
   1.142 +    InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   1.143 +      e=InEdgeIt(*this,v); return e; }
   1.144 +
   1.145 +    /// Node ID.
   1.146 +    
   1.147 +    /// The ID of a valid Node is a nonnegative integer not greater than
   1.148 +    /// \ref maxNodeId(). The range of the ID's is not surely continuous
   1.149 +    /// and the greatest node ID can be actually less then \ref maxNodeId().
   1.150 +    ///
   1.151 +    /// The ID of the \ref INVALID node is -1.
   1.152 +    ///\return The ID of the node \c v. 
   1.153 +    static int id(Node v) { return v.n; }
   1.154 +    /// Edge ID.
   1.155 +    
   1.156 +    /// The ID of a valid Edge is a nonnegative integer not greater than
   1.157 +    /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   1.158 +    /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   1.159 +    ///
   1.160 +    /// The ID of the \ref INVALID edge is -1.
   1.161 +    ///\return The ID of the edge \c e. 
   1.162 +    static int id(Edge e) { return e.n; }
   1.163 +
   1.164 +    /// Adds a new node to the graph.
   1.165 +
   1.166 +    /// \warning It adds the new node to the front of the list.
   1.167 +    /// (i.e. the lastly added node becomes the first.)
   1.168 +    Node addNode() {
   1.169 +      int n;
   1.170 +      
   1.171 +      if(first_free_node==-1)
   1.172 +	{
   1.173 +	  n = nodes.size();
   1.174 +	  nodes.push_back(NodeT());
   1.175 +	}
   1.176 +      else {
   1.177 +	n = first_free_node;
   1.178 +	first_free_node = nodes[n].next;
   1.179 +      }
   1.180 +      
   1.181 +      nodes[n].next = first_node;
   1.182 +      if(first_node != -1) nodes[first_node].prev = n;
   1.183 +      first_node = n;
   1.184 +      nodes[n].prev = -1;
   1.185 +      
   1.186 +      nodes[n].first_in = nodes[n].first_out = -1;
   1.187 +      
   1.188 +      Node nn; nn.n=n;
   1.189 +
   1.190 +      //Update dynamic maps
   1.191 +      node_maps.add(nn);
   1.192 +
   1.193 +      return nn;
   1.194 +    }
   1.195 +    
   1.196 +    Edge addEdge(Node u, Node v) {
   1.197 +      int n;
   1.198 +      
   1.199 +      if(first_free_edge==-1)
   1.200 +	{
   1.201 +	  n = edges.size();
   1.202 +	  edges.push_back(EdgeT());
   1.203 +	}
   1.204 +      else {
   1.205 +	n = first_free_edge;
   1.206 +	first_free_edge = edges[n].next_in;
   1.207 +      }
   1.208 +      
   1.209 +      edges[n].tail = u.n; edges[n].head = v.n;
   1.210 +
   1.211 +      edges[n].next_out = nodes[u.n].first_out;
   1.212 +      if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
   1.213 +      edges[n].next_in = nodes[v.n].first_in;
   1.214 +      if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
   1.215 +      edges[n].prev_in = edges[n].prev_out = -1;
   1.216 +	
   1.217 +      nodes[u.n].first_out = nodes[v.n].first_in = n;
   1.218 +
   1.219 +      Edge e; e.n=n;
   1.220 +
   1.221 +      //Update dynamic maps
   1.222 +      edge_maps.add(e);
   1.223 +
   1.224 +      return e;
   1.225 +    }
   1.226 +    
   1.227 +    /// Finds an edge between two nodes.
   1.228 +
   1.229 +    /// Finds an edge from node \c u to node \c v.
   1.230 +    ///
   1.231 +    /// If \c prev is \ref INVALID (this is the default value), then
   1.232 +    /// It finds the first edge from \c u to \c v. Otherwise it looks for
   1.233 +    /// the next edge from \c u to \c v after \c prev.
   1.234 +    /// \return The found edge or INVALID if there is no such an edge.
   1.235 +    Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   1.236 +    {
   1.237 +      int e = (prev.n==-1)? nodes[u.n].first_out : edges[prev.n].next_out;
   1.238 +      while(e!=-1 && edges[e].tail!=v.n) e = edges[e].next_out;
   1.239 +      prev.n=e;
   1.240 +      return prev;
   1.241 +    }
   1.242 +    
   1.243 +  private:
   1.244 +    void eraseEdge(int n) {
   1.245 +      
   1.246 +      if(edges[n].next_in!=-1)
   1.247 +	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   1.248 +      if(edges[n].prev_in!=-1)
   1.249 +	edges[edges[n].prev_in].next_in = edges[n].next_in;
   1.250 +      else nodes[edges[n].head].first_in = edges[n].next_in;
   1.251 +      
   1.252 +      if(edges[n].next_out!=-1)
   1.253 +	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   1.254 +      if(edges[n].prev_out!=-1)
   1.255 +	edges[edges[n].prev_out].next_out = edges[n].next_out;
   1.256 +      else nodes[edges[n].tail].first_out = edges[n].next_out;
   1.257 +      
   1.258 +      edges[n].next_in = first_free_edge;
   1.259 +      first_free_edge = n;      
   1.260 +
   1.261 +      //Update dynamic maps
   1.262 +      Edge e; e.n=n;
   1.263 +      edge_maps.erase(e);
   1.264 +
   1.265 +    }
   1.266 +      
   1.267 +  public:
   1.268 +
   1.269 +    void erase(Node nn) {
   1.270 +      int n=nn.n;
   1.271 +      
   1.272 +      int m;
   1.273 +      while((m=nodes[n].first_in)!=-1) eraseEdge(m);
   1.274 +      while((m=nodes[n].first_out)!=-1) eraseEdge(m);
   1.275 +
   1.276 +      if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
   1.277 +      if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
   1.278 +      else first_node = nodes[n].next;
   1.279 +      
   1.280 +      nodes[n].next = first_free_node;
   1.281 +      first_free_node = n;
   1.282 +
   1.283 +      //Update dynamic maps
   1.284 +      node_maps.erase(nn);
   1.285 +
   1.286 +    }
   1.287 +    
   1.288 +    void erase(Edge e) { eraseEdge(e.n); }
   1.289 +
   1.290 +    void clear() {
   1.291 +      edge_maps.clear();
   1.292 +      edges.clear();
   1.293 +      node_maps.clear();
   1.294 +      nodes.clear();
   1.295 +      first_node=first_free_node=first_free_edge=-1;
   1.296 +    }
   1.297 +
   1.298 +    class Node {
   1.299 +      friend class ListGraph;
   1.300 +      template <typename T> friend class NodeMap;
   1.301 +       
   1.302 +      friend class Edge;
   1.303 +      friend class OutEdgeIt;
   1.304 +      friend class InEdgeIt;
   1.305 +      friend class SymEdge;
   1.306 +
   1.307 +    protected:
   1.308 +      int n;
   1.309 +      friend int ListGraph::id(Node v); 
   1.310 +      Node(int nn) {n=nn;}
   1.311 +    public:
   1.312 +      Node() {}
   1.313 +      Node (Invalid) { n=-1; }
   1.314 +      bool operator==(const Node i) const {return n==i.n;}
   1.315 +      bool operator!=(const Node i) const {return n!=i.n;}
   1.316 +      bool operator<(const Node i) const {return n<i.n;}
   1.317 +      //      ///Validity check
   1.318 +      //      operator bool() { return n!=-1; }
   1.319 +    };
   1.320 +    
   1.321 +    class NodeIt : public Node {
   1.322 +      const ListGraph *G;
   1.323 +      friend class ListGraph;
   1.324 +    public:
   1.325 +      NodeIt() : Node() { }
   1.326 +      NodeIt(Invalid i) : Node(i) { }
   1.327 +      NodeIt(const ListGraph& _G) : Node(_G.first_node), G(&_G) { }
   1.328 +      NodeIt(const ListGraph& _G,Node n) : Node(n), G(&_G) { }
   1.329 +      NodeIt &operator++() {
   1.330 +	n=G->nodes[n].next; 
   1.331 +	return *this; 
   1.332 +      }
   1.333 +      //      ///Validity check
   1.334 +      //      operator bool() { return Node::operator bool(); }      
   1.335 +    };
   1.336 +
   1.337 +    class Edge {
   1.338 +      friend class ListGraph;
   1.339 +      template <typename T> friend class EdgeMap;
   1.340 +
   1.341 +      friend class SymListGraph;
   1.342 +      
   1.343 +      friend class Node;
   1.344 +      friend class NodeIt;
   1.345 +    protected:
   1.346 +      int n;
   1.347 +      friend int ListGraph::id(Edge e);
   1.348 +
   1.349 +    public:
   1.350 +      /// An Edge with id \c n.
   1.351 +
   1.352 +      /// \bug It should be
   1.353 +      /// obtained by a member function of the Graph.
   1.354 +      Edge(int nn) {n=nn;}
   1.355 +
   1.356 +      Edge() { }
   1.357 +      Edge (Invalid) { n=-1; }
   1.358 +      bool operator==(const Edge i) const {return n==i.n;}
   1.359 +      bool operator!=(const Edge i) const {return n!=i.n;}
   1.360 +      bool operator<(const Edge i) const {return n<i.n;}
   1.361 +      //      ///Validity check
   1.362 +      //      operator bool() { return n!=-1; }
   1.363 +   };
   1.364 +    
   1.365 +    class EdgeIt : public Edge {
   1.366 +      const ListGraph *G;
   1.367 +      friend class ListGraph;
   1.368 +    public:
   1.369 +      EdgeIt(const ListGraph& _G) : Edge(), G(&_G) {
   1.370 +      	int m;
   1.371 +	for(m=_G.first_node;
   1.372 +	    m!=-1 && _G.nodes[m].first_in == -1; m = _G.nodes[m].next);
   1.373 +	n = (m==-1)?-1:_G.nodes[m].first_in;
   1.374 +      }
   1.375 +      EdgeIt (Invalid i) : Edge(i) { }
   1.376 +      EdgeIt(const ListGraph& _G, Edge e) : Edge(e), G(&_G) { }
   1.377 +      EdgeIt() : Edge() { }
   1.378 +      EdgeIt &operator++() {
   1.379 +	if(G->edges[n].next_in!=-1) n=G->edges[n].next_in;
   1.380 +	else {
   1.381 +	  int nn;
   1.382 +	  for(nn=G->nodes[G->edges[n].head].next;
   1.383 +	      nn!=-1 && G->nodes[nn].first_in == -1;
   1.384 +	      nn = G->nodes[nn].next) ;
   1.385 +	  n = (nn==-1)?-1:G->nodes[nn].first_in;
   1.386 +	}
   1.387 +	return *this;
   1.388 +      }
   1.389 +      //      ///Validity check
   1.390 +      //      operator bool() { return Edge::operator bool(); }      
   1.391 +    };
   1.392 +    
   1.393 +    class OutEdgeIt : public Edge {
   1.394 +      const ListGraph *G;
   1.395 +      friend class ListGraph;
   1.396 +    public: 
   1.397 +      OutEdgeIt() : Edge() { }
   1.398 +      OutEdgeIt(const ListGraph& _G, Edge e) : Edge(e), G(&_G) { }
   1.399 +      OutEdgeIt (Invalid i) : Edge(i) { }
   1.400 +
   1.401 +      OutEdgeIt(const ListGraph& _G,const Node v)
   1.402 +	: Edge(_G.nodes[v.n].first_out), G(&_G) {}
   1.403 +      OutEdgeIt &operator++() { n=G->edges[n].next_out; return *this; }
   1.404 +      //      ///Validity check
   1.405 +      //      operator bool() { return Edge::operator bool(); }      
   1.406 +    };
   1.407 +    
   1.408 +    class InEdgeIt : public Edge {
   1.409 +      const ListGraph *G;
   1.410 +      friend class ListGraph;
   1.411 +    public: 
   1.412 +      InEdgeIt() : Edge() { }
   1.413 +      InEdgeIt(const ListGraph& _G, Edge e) : Edge(e), G(&_G) { }
   1.414 +      InEdgeIt (Invalid i) : Edge(i) { }
   1.415 +      InEdgeIt(const ListGraph& _G,Node v)
   1.416 +	: Edge(_G.nodes[v.n].first_in), G(&_G) { }
   1.417 +      InEdgeIt &operator++() { n=G->edges[n].next_in; return *this; }
   1.418 +      //      ///Validity check
   1.419 +      //      operator bool() { return Edge::operator bool(); }      
   1.420 +    };
   1.421 +  };
   1.422 +
   1.423 +  ///Graph for bidirectional edges.
   1.424 +
   1.425 +  ///The purpose of this graph structure is to handle graphs
   1.426 +  ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
   1.427 +  ///of oppositely directed edges.
   1.428 +  ///There is a new edge map type called
   1.429 +  ///\ref lemon::SymListGraph::SymEdgeMap "SymEdgeMap"
   1.430 +  ///that complements this
   1.431 +  ///feature by
   1.432 +  ///storing shared values for the edge pairs. The usual
   1.433 +  ///\ref lemon::skeleton::StaticGraph::EdgeMap "EdgeMap"
   1.434 +  ///can be used
   1.435 +  ///as well.
   1.436 +  ///
   1.437 +  ///The oppositely directed edge can also be obtained easily
   1.438 +  ///using \ref lemon::SymListGraph::opposite() "opposite()" member function.
   1.439 +  ///
   1.440 +  ///Here erase(Edge) deletes a pair of edges.
   1.441 +  ///
   1.442 +  ///\todo this date structure need some reconsiderations. Maybe it
   1.443 +  ///should be implemented independently from ListGraph.
   1.444 +  
   1.445 +  class SymListGraph : public ListGraph
   1.446 +  {
   1.447 +  public:
   1.448 +
   1.449 +    typedef SymListGraph Graph;
   1.450 +
   1.451 +    // Create symmetric map registry.
   1.452 +    CREATE_SYM_EDGE_MAP_REGISTRY;
   1.453 +    // Create symmetric edge map.
   1.454 +    CREATE_SYM_EDGE_MAP(ArrayMap);
   1.455 +
   1.456 +    SymListGraph() : ListGraph() { }
   1.457 +    SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
   1.458 +    ///Adds a pair of oppositely directed edges to the graph.
   1.459 +    Edge addEdge(Node u, Node v)
   1.460 +    {
   1.461 +      Edge e = ListGraph::addEdge(u,v);
   1.462 +      Edge f = ListGraph::addEdge(v,u);
   1.463 +      sym_edge_maps.add(e);
   1.464 +      sym_edge_maps.add(f);
   1.465 +      
   1.466 +      return e;
   1.467 +    }
   1.468 +
   1.469 +    void erase(Node n) { ListGraph::erase(n);}
   1.470 +    ///The oppositely directed edge.
   1.471 +
   1.472 +    ///Returns the oppositely directed
   1.473 +    ///pair of the edge \c e.
   1.474 +    static Edge opposite(Edge e)
   1.475 +    {
   1.476 +      Edge f;
   1.477 +      f.n = e.n - 2*(e.n%2) + 1;
   1.478 +      return f;
   1.479 +    }
   1.480 +    
   1.481 +    ///Removes a pair of oppositely directed edges to the graph.
   1.482 +    void erase(Edge e) {
   1.483 +      Edge f = opposite(e);
   1.484 +      sym_edge_maps.erase(e);
   1.485 +      sym_edge_maps.erase(f);
   1.486 +      ListGraph::erase(f);
   1.487 +      ListGraph::erase(e);
   1.488 +    }    
   1.489 +  };
   1.490 +
   1.491 +
   1.492 +  ///A graph class containing only nodes.
   1.493 +
   1.494 +  ///This class implements a graph structure without edges.
   1.495 +  ///The most useful application of this class is to be the node set of an
   1.496 +  ///\ref EdgeSet class.
   1.497 +  ///
   1.498 +  ///It conforms to 
   1.499 +  ///the \ref skeleton::ExtendableGraph "ExtendableGraph" concept
   1.500 +  ///with the exception that you cannot
   1.501 +  ///add (or delete) edges. The usual edge iterators are exists, but they are
   1.502 +  ///always \ref INVALID.
   1.503 +  ///\sa skeleton::ExtendableGraph
   1.504 +  ///\sa EdgeSet
   1.505 +  class NodeSet {
   1.506 +
   1.507 +    //Nodes are double linked.
   1.508 +    //The free nodes are only single linked using the "next" field.
   1.509 +    struct NodeT 
   1.510 +    {
   1.511 +      int first_in,first_out;
   1.512 +      int prev, next;
   1.513 +      //      NodeT() {}
   1.514 +    };
   1.515 +
   1.516 +    std::vector<NodeT> nodes;
   1.517 +    //The first node
   1.518 +    int first_node;
   1.519 +    //The first free node
   1.520 +    int first_free_node;
   1.521 +    
   1.522 +  public:
   1.523 +
   1.524 +    typedef NodeSet Graph;
   1.525 +    
   1.526 +    class Node;
   1.527 +    class Edge;
   1.528 +
   1.529 +  public:
   1.530 +
   1.531 +    class NodeIt;
   1.532 +    class EdgeIt;
   1.533 +    class OutEdgeIt;
   1.534 +    class InEdgeIt;
   1.535 +    
   1.536 +    // Create node map registry.
   1.537 +    CREATE_NODE_MAP_REGISTRY;
   1.538 +    // Create node maps.
   1.539 +    CREATE_NODE_MAP(ArrayMap);
   1.540 +
   1.541 +    /// Creating empty map structure for edges.
   1.542 +    template <typename Value>
   1.543 +    class EdgeMap {
   1.544 +    public:
   1.545 +      EdgeMap(const Graph&) {}
   1.546 +      EdgeMap(const Graph&, const Value&) {}
   1.547 +
   1.548 +      EdgeMap(const EdgeMap&) {}
   1.549 +      template <typename CMap> EdgeMap(const CMap&) {}
   1.550 +
   1.551 +      EdgeMap& operator=(const EdgeMap&) {}
   1.552 +      template <typename CMap> EdgeMap& operator=(const CMap&) {}
   1.553 +      
   1.554 +      class ConstIterator {
   1.555 +      public:
   1.556 +	bool operator==(const ConstIterator&) {return true;}
   1.557 +	bool operator!=(const ConstIterator&) {return false;}
   1.558 +      };
   1.559 +
   1.560 +      typedef ConstIterator Iterator;
   1.561 +      
   1.562 +      Iterator begin() { return Iterator();}
   1.563 +      Iterator end() { return Iterator();}
   1.564 +
   1.565 +      ConstIterator begin() const { return ConstIterator();}
   1.566 +      ConstIterator end() const { return ConstIterator();}
   1.567 +
   1.568 +    };
   1.569 +    
   1.570 +  public:
   1.571 +
   1.572 +    ///Default constructor
   1.573 +    NodeSet() 
   1.574 +      : nodes(), first_node(-1), first_free_node(-1) {}
   1.575 +    ///Copy constructor
   1.576 +    NodeSet(const NodeSet &_g) 
   1.577 +      : nodes(_g.nodes), first_node(_g.first_node),
   1.578 +	first_free_node(_g.first_free_node) {}
   1.579 +    
   1.580 +    ///Number of nodes.
   1.581 +    int nodeNum() const { return nodes.size(); }
   1.582 +    ///Number of edges.
   1.583 +    int edgeNum() const { return 0; }
   1.584 +
   1.585 +    /// Maximum node ID.
   1.586 +    
   1.587 +    /// Maximum node ID.
   1.588 +    ///\sa id(Node)
   1.589 +    int maxNodeId() const { return nodes.size()-1; }
   1.590 +    /// Maximum edge ID.
   1.591 +    
   1.592 +    /// Maximum edge ID.
   1.593 +    ///\sa id(Edge)
   1.594 +    int maxEdgeId() const { return 0; }
   1.595 +
   1.596 +    Node tail(Edge e) const { return INVALID; }
   1.597 +    Node head(Edge e) const { return INVALID; }
   1.598 +
   1.599 +    NodeIt& first(NodeIt& v) const { 
   1.600 +      v=NodeIt(*this); return v; }
   1.601 +    EdgeIt& first(EdgeIt& e) const { 
   1.602 +      e=EdgeIt(*this); return e; }
   1.603 +    OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   1.604 +      e=OutEdgeIt(*this,v); return e; }
   1.605 +    InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   1.606 +      e=InEdgeIt(*this,v); return e; }
   1.607 +
   1.608 +    /// Node ID.
   1.609 +    
   1.610 +    /// The ID of a valid Node is a nonnegative integer not greater than
   1.611 +    /// \ref maxNodeId(). The range of the ID's is not surely continuous
   1.612 +    /// and the greatest node ID can be actually less then \ref maxNodeId().
   1.613 +    ///
   1.614 +    /// The ID of the \ref INVALID node is -1.
   1.615 +    ///\return The ID of the node \c v. 
   1.616 +    static int id(Node v) { return v.n; }
   1.617 +    /// Edge ID.
   1.618 +    
   1.619 +    /// The ID of a valid Edge is a nonnegative integer not greater than
   1.620 +    /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   1.621 +    /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   1.622 +    ///
   1.623 +    /// The ID of the \ref INVALID edge is -1.
   1.624 +    ///\return The ID of the edge \c e. 
   1.625 +    static int id(Edge e) { return -1; }
   1.626 +
   1.627 +    /// Adds a new node to the graph.
   1.628 +
   1.629 +    /// \warning It adds the new node to the front of the list.
   1.630 +    /// (i.e. the lastly added node becomes the first.)
   1.631 +    Node addNode() {
   1.632 +      int n;
   1.633 +      
   1.634 +      if(first_free_node==-1)
   1.635 +	{
   1.636 +	  n = nodes.size();
   1.637 +	  nodes.push_back(NodeT());
   1.638 +	}
   1.639 +      else {
   1.640 +	n = first_free_node;
   1.641 +	first_free_node = nodes[n].next;
   1.642 +      }
   1.643 +      
   1.644 +      nodes[n].next = first_node;
   1.645 +      if(first_node != -1) nodes[first_node].prev = n;
   1.646 +      first_node = n;
   1.647 +      nodes[n].prev = -1;
   1.648 +      
   1.649 +      nodes[n].first_in = nodes[n].first_out = -1;
   1.650 +      
   1.651 +      Node nn; nn.n=n;
   1.652 +
   1.653 +      //Update dynamic maps
   1.654 +      node_maps.add(nn);
   1.655 +
   1.656 +      return nn;
   1.657 +    }
   1.658 +    
   1.659 +    void erase(Node nn) {
   1.660 +      int n=nn.n;
   1.661 +      
   1.662 +      if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
   1.663 +      if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
   1.664 +      else first_node = nodes[n].next;
   1.665 +      
   1.666 +      nodes[n].next = first_free_node;
   1.667 +      first_free_node = n;
   1.668 +
   1.669 +      //Update dynamic maps
   1.670 +      node_maps.erase(nn);
   1.671 +    }
   1.672 +    
   1.673 +        
   1.674 +    Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   1.675 +    {
   1.676 +      return INVALID;
   1.677 +    }
   1.678 +    
   1.679 +    void clear() {
   1.680 +      node_maps.clear();
   1.681 +      nodes.clear();
   1.682 +      first_node = first_free_node = -1;
   1.683 +    }
   1.684 +
   1.685 +    class Node {
   1.686 +      friend class NodeSet;
   1.687 +      template <typename T> friend class NodeMap;
   1.688 +      
   1.689 +      friend class Edge;
   1.690 +      friend class OutEdgeIt;
   1.691 +      friend class InEdgeIt;
   1.692 +
   1.693 +    protected:
   1.694 +      int n;
   1.695 +      friend int NodeSet::id(Node v); 
   1.696 +      Node(int nn) {n=nn;}
   1.697 +    public:
   1.698 +      Node() {}
   1.699 +      Node (Invalid i) { n=-1; }
   1.700 +      bool operator==(const Node i) const {return n==i.n;}
   1.701 +      bool operator!=(const Node i) const {return n!=i.n;}
   1.702 +      bool operator<(const Node i) const {return n<i.n;}
   1.703 +    };
   1.704 +    
   1.705 +    class NodeIt : public Node {
   1.706 +      const NodeSet *G;
   1.707 +      friend class NodeSet;
   1.708 +    public:
   1.709 +      NodeIt() : Node() { }
   1.710 +      NodeIt(const NodeSet& _G,Node n) : Node(n), G(&_G) { }
   1.711 +      NodeIt(Invalid i) : Node(i) { }
   1.712 +      NodeIt(const NodeSet& _G) : Node(_G.first_node), G(&_G) { }
   1.713 +      NodeIt &operator++() {
   1.714 +	n=G->nodes[n].next; 
   1.715 +	return *this; 
   1.716 +      }
   1.717 +    };
   1.718 +
   1.719 +    class Edge {
   1.720 +    public:
   1.721 +      Edge() { }
   1.722 +      Edge (Invalid) { }
   1.723 +      bool operator==(const Edge i) const {return true;}
   1.724 +      bool operator!=(const Edge i) const {return false;}
   1.725 +      bool operator<(const Edge i) const {return false;}
   1.726 +    };
   1.727 +    
   1.728 +    class EdgeIt : public Edge {
   1.729 +    public:
   1.730 +      EdgeIt(const NodeSet& G) : Edge() { }
   1.731 +      EdgeIt(const NodeSet&, Edge) : Edge() { }
   1.732 +      EdgeIt (Invalid i) : Edge(i) { }
   1.733 +      EdgeIt() : Edge() { }
   1.734 +      EdgeIt operator++() { return INVALID; }
   1.735 +    };
   1.736 +    
   1.737 +    class OutEdgeIt : public Edge {
   1.738 +      friend class NodeSet;
   1.739 +    public: 
   1.740 +      OutEdgeIt() : Edge() { }
   1.741 +      OutEdgeIt(const NodeSet&, Edge) : Edge() { }
   1.742 +      OutEdgeIt (Invalid i) : Edge(i) { }
   1.743 +      OutEdgeIt(const NodeSet& G,const Node v)	: Edge() {}
   1.744 +      OutEdgeIt operator++() { return INVALID; }
   1.745 +    };
   1.746 +    
   1.747 +    class InEdgeIt : public Edge {
   1.748 +      friend class NodeSet;
   1.749 +    public: 
   1.750 +      InEdgeIt() : Edge() { }
   1.751 +      InEdgeIt(const NodeSet&, Edge) : Edge() { }
   1.752 +      InEdgeIt (Invalid i) : Edge(i) { }
   1.753 +      InEdgeIt(const NodeSet& G,Node v) :Edge() {}
   1.754 +      InEdgeIt operator++() { return INVALID; }
   1.755 +    };
   1.756 +
   1.757 +  };
   1.758 +
   1.759 +
   1.760 +
   1.761 +  ///Graph structure using a node set of another graph.
   1.762 +
   1.763 +  ///This structure can be used to establish another graph over a node set
   1.764 +  /// of an existing one. The node iterator will go through the nodes of the
   1.765 +  /// original graph, and the NodeMap's of both graphs will convert to
   1.766 +  /// each other.
   1.767 +  ///
   1.768 +  ///\warning Adding or deleting nodes from the graph is not safe if an
   1.769 +  ///\ref EdgeSet is currently attached to it!
   1.770 +  ///
   1.771 +  ///\todo Make it possible to add/delete edges from the base graph
   1.772 +  ///(and from \ref EdgeSet, as well)
   1.773 +  ///
   1.774 +  ///\param GG The type of the graph which shares its node set with this class.
   1.775 +  ///Its interface must conform to the
   1.776 +  ///\ref skeleton::StaticGraph "StaticGraph" concept.
   1.777 +  ///
   1.778 +  ///It conforms to the 
   1.779 +  ///\ref skeleton::ExtendableGraph "ExtendableGraph" concept.
   1.780 +  ///\sa skeleton::ExtendableGraph.
   1.781 +  ///\sa NodeSet.
   1.782 +  template<typename GG>
   1.783 +  class EdgeSet {
   1.784 +
   1.785 +    typedef GG NodeGraphType;
   1.786 +
   1.787 +    NodeGraphType &G;
   1.788 +
   1.789 +  public:
   1.790 +
   1.791 +    class Node;
   1.792 +    class Edge;
   1.793 +    class OutEdgeIt;
   1.794 +    class InEdgeIt;
   1.795 +    class SymEdge;
   1.796 +
   1.797 +    typedef EdgeSet Graph;
   1.798 +
   1.799 +    int id(Node v) const; 
   1.800 +
   1.801 +    class Node : public NodeGraphType::Node {
   1.802 +      friend class EdgeSet;
   1.803 +      
   1.804 +      friend class Edge;
   1.805 +      friend class OutEdgeIt;
   1.806 +      friend class InEdgeIt;
   1.807 +      friend class SymEdge;
   1.808 +
   1.809 +    public:
   1.810 +      friend int EdgeSet::id(Node v) const; 
   1.811 +    public:
   1.812 +      Node() : NodeGraphType::Node() {}
   1.813 +      Node (Invalid i) : NodeGraphType::Node(i) {}
   1.814 +      Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {}
   1.815 +    };
   1.816 +    
   1.817 +    class NodeIt : public NodeGraphType::NodeIt {
   1.818 +      friend class EdgeSet;
   1.819 +    public:
   1.820 +      NodeIt() : NodeGraphType::NodeIt() { }
   1.821 +      NodeIt(const EdgeSet& _G,Node n) : NodeGraphType::NodeIt(_G.G,n) { }
   1.822 +      NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {}
   1.823 +      NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { }
   1.824 +      NodeIt(const typename NodeGraphType::NodeIt &n)
   1.825 +	: NodeGraphType::NodeIt(n) {}
   1.826 +
   1.827 +      operator Node() { return Node(*this);}
   1.828 +      NodeIt &operator++()
   1.829 +      { this->NodeGraphType::NodeIt::operator++(); return *this;} 
   1.830 +    };
   1.831 +
   1.832 +  private:
   1.833 +    //Edges are double linked.
   1.834 +    //The free edges are only single linked using the "next_in" field.
   1.835 +    struct NodeT 
   1.836 +    {
   1.837 +      int first_in,first_out;
   1.838 +      NodeT() : first_in(-1), first_out(-1) { }
   1.839 +    };
   1.840 +
   1.841 +    struct EdgeT 
   1.842 +    {
   1.843 +      Node head, tail;
   1.844 +      int prev_in, prev_out;
   1.845 +      int next_in, next_out;
   1.846 +    };
   1.847 +
   1.848 +    
   1.849 +    typename NodeGraphType::template NodeMap<NodeT> nodes;
   1.850 +    
   1.851 +    std::vector<EdgeT> edges;
   1.852 +    //The first free edge
   1.853 +    int first_free_edge;
   1.854 +    
   1.855 +  public:
   1.856 +    
   1.857 +    class Node;
   1.858 +    class Edge;
   1.859 +
   1.860 +    class NodeIt;
   1.861 +    class EdgeIt;
   1.862 +    class OutEdgeIt;
   1.863 +    class InEdgeIt;
   1.864 +
   1.865 +
   1.866 +    // Create edge map registry.
   1.867 +    CREATE_EDGE_MAP_REGISTRY;
   1.868 +    // Create edge maps.
   1.869 +    CREATE_EDGE_MAP(ArrayMap);
   1.870 +
   1.871 +    // Import node maps from the NodeGraphType.
   1.872 +    IMPORT_NODE_MAP(NodeGraphType, graph.G, EdgeSet, graph);
   1.873 +    
   1.874 +    
   1.875 +  public:
   1.876 +
   1.877 +    ///Constructor
   1.878 +    
   1.879 +    ///Construates a new graph based on the nodeset of an existing one.
   1.880 +    ///\param _G the base graph.
   1.881 +    explicit EdgeSet(NodeGraphType &_G) 
   1.882 +      : G(_G), nodes(_G), edges(),
   1.883 +	first_free_edge(-1) {}
   1.884 +    ///Copy constructor
   1.885 +
   1.886 +    ///Makes a copy of an EdgeSet.
   1.887 +    ///It will be based on the same graph.
   1.888 +    explicit EdgeSet(const EdgeSet &_g) 
   1.889 +      : G(_g.G), nodes(_g.G), edges(_g.edges),
   1.890 +	first_free_edge(_g.first_free_edge) {}
   1.891 +    
   1.892 +    ///Number of nodes.
   1.893 +    int nodeNum() const { return G.nodeNum(); }
   1.894 +    ///Number of edges.
   1.895 +    int edgeNum() const { return edges.size(); }
   1.896 +
   1.897 +    /// Maximum node ID.
   1.898 +    
   1.899 +    /// Maximum node ID.
   1.900 +    ///\sa id(Node)
   1.901 +    int maxNodeId() const { return G.maxNodeId(); }
   1.902 +    /// Maximum edge ID.
   1.903 +    
   1.904 +    /// Maximum edge ID.
   1.905 +    ///\sa id(Edge)
   1.906 +    int maxEdgeId() const { return edges.size()-1; }
   1.907 +
   1.908 +    Node tail(Edge e) const { return edges[e.n].tail; }
   1.909 +    Node head(Edge e) const { return edges[e.n].head; }
   1.910 +
   1.911 +    NodeIt& first(NodeIt& v) const { 
   1.912 +      v=NodeIt(*this); return v; }
   1.913 +    EdgeIt& first(EdgeIt& e) const { 
   1.914 +      e=EdgeIt(*this); return e; }
   1.915 +    OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   1.916 +      e=OutEdgeIt(*this,v); return e; }
   1.917 +    InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   1.918 +      e=InEdgeIt(*this,v); return e; }
   1.919 +
   1.920 +    /// Node ID.
   1.921 +    
   1.922 +    /// The ID of a valid Node is a nonnegative integer not greater than
   1.923 +    /// \ref maxNodeId(). The range of the ID's is not surely continuous
   1.924 +    /// and the greatest node ID can be actually less then \ref maxNodeId().
   1.925 +    ///
   1.926 +    /// The ID of the \ref INVALID node is -1.
   1.927 +    ///\return The ID of the node \c v. 
   1.928 +    int id(Node v) { return G.id(v); }
   1.929 +    /// Edge ID.
   1.930 +    
   1.931 +    /// The ID of a valid Edge is a nonnegative integer not greater than
   1.932 +    /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   1.933 +    /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   1.934 +    ///
   1.935 +    /// The ID of the \ref INVALID edge is -1.
   1.936 +    ///\return The ID of the edge \c e. 
   1.937 +    static int id(Edge e) { return e.n; }
   1.938 +
   1.939 +    /// Adds a new node to the graph.
   1.940 +    Node addNode() { return G.addNode(); }
   1.941 +    
   1.942 +    Edge addEdge(Node u, Node v) {
   1.943 +      int n;
   1.944 +      
   1.945 +      if(first_free_edge==-1)
   1.946 +	{
   1.947 +	  n = edges.size();
   1.948 +	  edges.push_back(EdgeT());
   1.949 +	}
   1.950 +      else {
   1.951 +	n = first_free_edge;
   1.952 +	first_free_edge = edges[n].next_in;
   1.953 +      }
   1.954 +      
   1.955 +      edges[n].tail = u; edges[n].head = v;
   1.956 +
   1.957 +      edges[n].next_out = nodes[u].first_out;
   1.958 +      if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n;
   1.959 +      edges[n].next_in = nodes[v].first_in;
   1.960 +      if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n;
   1.961 +      edges[n].prev_in = edges[n].prev_out = -1;
   1.962 +	
   1.963 +      nodes[u].first_out = nodes[v].first_in = n;
   1.964 +
   1.965 +      Edge e; e.n=n;
   1.966 +
   1.967 +      //Update dynamic maps
   1.968 +      edge_maps.add(e);
   1.969 +
   1.970 +      return e;
   1.971 +    }
   1.972 +
   1.973 +    /// Finds an edge between two nodes.
   1.974 +
   1.975 +    /// Finds an edge from node \c u to node \c v.
   1.976 +    ///
   1.977 +    /// If \c prev is \ref INVALID (this is the default value), then
   1.978 +    /// It finds the first edge from \c u to \c v. Otherwise it looks for
   1.979 +    /// the next edge from \c u to \c v after \c prev.
   1.980 +    /// \return The found edge or INVALID if there is no such an edge.
   1.981 +    Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   1.982 +    {
   1.983 +      int e = (prev.n==-1)? nodes[u].first_out : edges[prev.n].next_out;
   1.984 +      while(e!=-1 && edges[e].tail!=v) e = edges[e].next_out;
   1.985 +      prev.n=e;
   1.986 +      return prev;
   1.987 +    }
   1.988 +    
   1.989 +  private:
   1.990 +    void eraseEdge(int n) {
   1.991 +      
   1.992 +      if(edges[n].next_in!=-1)
   1.993 +	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   1.994 +      if(edges[n].prev_in!=-1)
   1.995 +	edges[edges[n].prev_in].next_in = edges[n].next_in;
   1.996 +      else nodes[edges[n].head].first_in = edges[n].next_in;
   1.997 +      
   1.998 +      if(edges[n].next_out!=-1)
   1.999 +	edges[edges[n].next_out].prev_out = edges[n].prev_out;
  1.1000 +      if(edges[n].prev_out!=-1)
  1.1001 +	edges[edges[n].prev_out].next_out = edges[n].next_out;
  1.1002 +      else nodes[edges[n].tail].first_out = edges[n].next_out;
  1.1003 +      
  1.1004 +      edges[n].next_in = first_free_edge;
  1.1005 +      first_free_edge = -1;      
  1.1006 +
  1.1007 +      //Update dynamic maps
  1.1008 +      Edge e; e.n = n;
  1.1009 +      edge_maps.erase(e);
  1.1010 +    }
  1.1011 +      
  1.1012 +  public:
  1.1013 +
  1.1014 +    void erase(Edge e) { eraseEdge(e.n); }
  1.1015 +
  1.1016 +    ///Clear all edges. (Doesn't clear the nodes!)
  1.1017 +    void clear() {
  1.1018 +      edge_maps.clear();
  1.1019 +      edges.clear();
  1.1020 +      first_free_edge=-1;
  1.1021 +    }
  1.1022 +
  1.1023 +
  1.1024 +    class Edge {
  1.1025 +    public:
  1.1026 +      friend class EdgeSet;
  1.1027 +      template <typename T> friend class EdgeMap;
  1.1028 +
  1.1029 +      friend class Node;
  1.1030 +      friend class NodeIt;
  1.1031 +    protected:
  1.1032 +      int n;
  1.1033 +      friend int EdgeSet::id(Edge e) const;
  1.1034 +
  1.1035 +      Edge(int nn) {n=nn;}
  1.1036 +    public:
  1.1037 +      Edge() { }
  1.1038 +      Edge (Invalid) { n=-1; }
  1.1039 +      bool operator==(const Edge i) const {return n==i.n;}
  1.1040 +      bool operator!=(const Edge i) const {return n!=i.n;}
  1.1041 +      bool operator<(const Edge i) const {return n<i.n;}
  1.1042 +    };
  1.1043 +    
  1.1044 +    class EdgeIt : public Edge {
  1.1045 +      friend class EdgeSet;
  1.1046 +      template <typename T> friend class EdgeMap;
  1.1047 +    
  1.1048 +      const EdgeSet *G;
  1.1049 +    public:
  1.1050 +      EdgeIt(const EdgeSet& _G) : Edge(), G(&_G) {
  1.1051 +        NodeIt m;
  1.1052 +	for(G->first(m);
  1.1053 +	    m!=INVALID && G->nodes[m].first_in == -1;  ++m);
  1.1054 +	///\bug AJJAJ! This is a non sense!!!!!!!
  1.1055 +	this->n = m!=INVALID?-1:G->nodes[m].first_in;
  1.1056 +      }
  1.1057 +      EdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { }
  1.1058 +      EdgeIt (Invalid i) : Edge(i) { }
  1.1059 +      EdgeIt() : Edge() { }
  1.1060 +      ///.
  1.1061 +      
  1.1062 +      ///\bug UNIMPLEMENTED!!!!!
  1.1063 +      //
  1.1064 +      EdgeIt &operator++() {
  1.1065 +	return *this;
  1.1066 +      }
  1.1067 +    };
  1.1068 +    
  1.1069 +    class OutEdgeIt : public Edge {
  1.1070 +      const EdgeSet *G;
  1.1071 +      friend class EdgeSet;
  1.1072 +    public: 
  1.1073 +      OutEdgeIt() : Edge() { }
  1.1074 +      OutEdgeIt (Invalid i) : Edge(i) { }
  1.1075 +      OutEdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { }
  1.1076 +
  1.1077 +      OutEdgeIt(const EdgeSet& _G,const Node v) :
  1.1078 +	Edge(_G.nodes[v].first_out), G(&_G) { }
  1.1079 +      OutEdgeIt &operator++() { 
  1.1080 +	Edge::n = G->edges[Edge::n].next_out;
  1.1081 +	return *this; 
  1.1082 +      }
  1.1083 +    };
  1.1084 +    
  1.1085 +    class InEdgeIt : public Edge {
  1.1086 +      const EdgeSet *G;
  1.1087 +      friend class EdgeSet;
  1.1088 +    public: 
  1.1089 +      InEdgeIt() : Edge() { }
  1.1090 +      InEdgeIt (Invalid i) : Edge(i) { }
  1.1091 +      InEdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { }
  1.1092 +      InEdgeIt(const EdgeSet& _G,Node v)
  1.1093 +	: Edge(_G.nodes[v].first_in), G(&_G) { }
  1.1094 +      InEdgeIt &operator++() { 
  1.1095 +	Edge::n = G->edges[Edge::n].next_in; 
  1.1096 +	return *this; 
  1.1097 +      }
  1.1098 +    };
  1.1099 +    
  1.1100 +  };
  1.1101 +
  1.1102 +  template<typename GG>
  1.1103 +  inline int EdgeSet<GG>::id(Node v) const { return G.id(v); }
  1.1104 +
  1.1105 +/// @}  
  1.1106 +
  1.1107 +} //namespace lemon
  1.1108 +
  1.1109 +#endif //LEMON_LIST_GRAPH_H