src/lemon/min_cost_flow.h
changeset 921 818510fa3d99
parent 910 5a89cacf17f1
child 941 186aa53d2802
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/lemon/min_cost_flow.h	Wed Sep 29 15:30:04 2004 +0000
     1.3 @@ -0,0 +1,256 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/min_cost_flow.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_MIN_COST_FLOW_H
    1.21 +#define LEMON_MIN_COST_FLOW_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +///\file
    1.25 +///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
    1.26 +
    1.27 +
    1.28 +#include <lemon/dijkstra.h>
    1.29 +#include <lemon/graph_wrapper.h>
    1.30 +#include <lemon/maps.h>
    1.31 +#include <vector>
    1.32 +
    1.33 +namespace lemon {
    1.34 +
    1.35 +/// \addtogroup flowalgs
    1.36 +/// @{
    1.37 +
    1.38 +  ///\brief Implementation of an algorithm for finding a flow of value \c k 
    1.39 +  ///(for small values of \c k) having minimal total cost between 2 nodes 
    1.40 +  /// 
    1.41 +  ///
    1.42 +  /// The class \ref lemon::MinCostFlow "MinCostFlow" implements
    1.43 +  /// an algorithm for finding a flow of value \c k 
    1.44 +  /// having minimal total cost 
    1.45 +  /// from a given source node to a given target node in an
    1.46 +  /// edge-weighted directed graph. To this end, 
    1.47 +  /// the edge-capacities and edge-weitghs have to be nonnegative. 
    1.48 +  /// The edge-capacities should be integers, but the edge-weights can be 
    1.49 +  /// integers, reals or of other comparable numeric type.
    1.50 +  /// This algorithm is intended to use only for small values of \c k, 
    1.51 +  /// since it is only polynomial in k, 
    1.52 +  /// not in the length of k (which is log k). 
    1.53 +  /// In order to find the minimum cost flow of value \c k it 
    1.54 +  /// finds the minimum cost flow of value \c i for every 
    1.55 +  /// \c i between 0 and \c k. 
    1.56 +  ///
    1.57 +  ///\param Graph The directed graph type the algorithm runs on.
    1.58 +  ///\param LengthMap The type of the length map.
    1.59 +  ///\param CapacityMap The capacity map type.
    1.60 +  ///
    1.61 +  ///\author Attila Bernath
    1.62 +  template <typename Graph, typename LengthMap, typename CapacityMap>
    1.63 +  class MinCostFlow {
    1.64 +
    1.65 +    typedef typename LengthMap::ValueType Length;
    1.66 +
    1.67 +    //Warning: this should be integer type
    1.68 +    typedef typename CapacityMap::ValueType Capacity;
    1.69 +    
    1.70 +    typedef typename Graph::Node Node;
    1.71 +    typedef typename Graph::NodeIt NodeIt;
    1.72 +    typedef typename Graph::Edge Edge;
    1.73 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.74 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.75 +
    1.76 +
    1.77 +    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
    1.78 +    typedef typename ResGW::Edge ResGraphEdge;
    1.79 +
    1.80 +    class ModLengthMap {   
    1.81 +      typedef typename Graph::template NodeMap<Length> NodeMap;
    1.82 +      const ResGW& G;
    1.83 +      const LengthMap &ol;
    1.84 +      const NodeMap &pot;
    1.85 +    public :
    1.86 +      typedef typename LengthMap::KeyType KeyType;
    1.87 +      typedef typename LengthMap::ValueType ValueType;
    1.88 +	
    1.89 +      ValueType operator[](typename ResGW::Edge e) const {     
    1.90 +	if (G.forward(e))
    1.91 +	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.92 +	else
    1.93 +	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.94 +      }     
    1.95 +	
    1.96 +      ModLengthMap(const ResGW& _G,
    1.97 +		   const LengthMap &o,  const NodeMap &p) : 
    1.98 +	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    1.99 +    };//ModLengthMap
   1.100 +
   1.101 +
   1.102 +  protected:
   1.103 +    
   1.104 +    //Input
   1.105 +    const Graph& G;
   1.106 +    const LengthMap& length;
   1.107 +    const CapacityMap& capacity;
   1.108 +
   1.109 +
   1.110 +    //auxiliary variables
   1.111 +
   1.112 +    //To store the flow
   1.113 +    EdgeIntMap flow; 
   1.114 +    //To store the potential (dual variables)
   1.115 +    typedef typename Graph::template NodeMap<Length> PotentialMap;
   1.116 +    PotentialMap potential;
   1.117 +    
   1.118 +
   1.119 +    Length total_length;
   1.120 +
   1.121 +
   1.122 +  public :
   1.123 +
   1.124 +    /// The constructor of the class.
   1.125 +    
   1.126 +    ///\param _G The directed graph the algorithm runs on. 
   1.127 +    ///\param _length The length (weight or cost) of the edges. 
   1.128 +    ///\param _cap The capacity of the edges. 
   1.129 +    MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   1.130 +      length(_length), capacity(_cap), flow(_G), potential(_G){ }
   1.131 +
   1.132 +    
   1.133 +    ///Runs the algorithm.
   1.134 +    
   1.135 +    ///Runs the algorithm.
   1.136 +    ///Returns k if there is a flow of value at least k edge-disjoint 
   1.137 +    ///from s to t.
   1.138 +    ///Otherwise it returns the maximum value of a flow from s to t.
   1.139 +    ///
   1.140 +    ///\param s The source node.
   1.141 +    ///\param t The target node.
   1.142 +    ///\param k The value of the flow we are looking for.
   1.143 +    ///
   1.144 +    ///\todo May be it does make sense to be able to start with a nonzero 
   1.145 +    /// feasible primal-dual solution pair as well.
   1.146 +    int run(Node s, Node t, int k) {
   1.147 +
   1.148 +      //Resetting variables from previous runs
   1.149 +      total_length = 0;
   1.150 +      
   1.151 +      for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
   1.152 +
   1.153 +      //Initialize the potential to zero
   1.154 +      for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
   1.155 +      
   1.156 +      
   1.157 +      //We need a residual graph
   1.158 +      ResGW res_graph(G, capacity, flow);
   1.159 +
   1.160 +
   1.161 +      ModLengthMap mod_length(res_graph, length, potential);
   1.162 +
   1.163 +      Dijkstra<ResGW, ModLengthMap> dijkstra(res_graph, mod_length);
   1.164 +
   1.165 +      int i;
   1.166 +      for (i=0; i<k; ++i){
   1.167 +	dijkstra.run(s);
   1.168 +	if (!dijkstra.reached(t)){
   1.169 +	  //There are no flow of value k from s to t
   1.170 +	  break;
   1.171 +	};
   1.172 +	
   1.173 +	//We have to change the potential
   1.174 +        for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
   1.175 +	  potential[n] += dijkstra.distMap()[n];
   1.176 +
   1.177 +
   1.178 +	//Augmenting on the sortest path
   1.179 +	Node n=t;
   1.180 +	ResGraphEdge e;
   1.181 +	while (n!=s){
   1.182 +	  e = dijkstra.pred(n);
   1.183 +	  n = dijkstra.predNode(n);
   1.184 +	  res_graph.augment(e,1);
   1.185 +	  //Let's update the total length
   1.186 +	  if (res_graph.forward(e))
   1.187 +	    total_length += length[e];
   1.188 +	  else 
   1.189 +	    total_length -= length[e];	    
   1.190 +	}
   1.191 +
   1.192 +	  
   1.193 +      }
   1.194 +      
   1.195 +
   1.196 +      return i;
   1.197 +    }
   1.198 +
   1.199 +
   1.200 +
   1.201 +    /// Gives back the total weight of the found flow.
   1.202 +
   1.203 +    ///This function gives back the total weight of the found flow.
   1.204 +    ///Assumes that \c run() has been run and nothing changed since then.
   1.205 +    Length totalLength(){
   1.206 +      return total_length;
   1.207 +    }
   1.208 +
   1.209 +    ///Returns a const reference to the EdgeMap \c flow. 
   1.210 +
   1.211 +    ///Returns a const reference to the EdgeMap \c flow. 
   1.212 +    ///\pre \ref run() must
   1.213 +    ///be called before using this function.
   1.214 +    const EdgeIntMap &getFlow() const { return flow;}
   1.215 +
   1.216 +    ///Returns a const reference to the NodeMap \c potential (the dual solution).
   1.217 +
   1.218 +    ///Returns a const reference to the NodeMap \c potential (the dual solution).
   1.219 +    /// \pre \ref run() must be called before using this function.
   1.220 +    const PotentialMap &getPotential() const { return potential;}
   1.221 +
   1.222 +    /// Checking the complementary slackness optimality criteria
   1.223 +
   1.224 +    ///This function checks, whether the given solution is optimal
   1.225 +    ///If executed after the call of \c run() then it should return with true.
   1.226 +    ///This function only checks optimality, doesn't bother with feasibility.
   1.227 +    ///It is meant for testing purposes.
   1.228 +    ///
   1.229 +    bool checkComplementarySlackness(){
   1.230 +      Length mod_pot;
   1.231 +      Length fl_e;
   1.232 +        for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
   1.233 +	//C^{\Pi}_{i,j}
   1.234 +	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   1.235 +	fl_e = flow[e];
   1.236 +	if (0<fl_e && fl_e<capacity[e]) {
   1.237 +	  /// \todo better comparison is needed for real types, moreover, 
   1.238 +	  /// this comparison here is superfluous.
   1.239 +	  if (mod_pot != 0)
   1.240 +	    return false;
   1.241 +	} 
   1.242 +	else {
   1.243 +	  if (mod_pot > 0 && fl_e != 0)
   1.244 +	    return false;
   1.245 +	  if (mod_pot < 0 && fl_e != capacity[e])
   1.246 +	    return false;
   1.247 +	}
   1.248 +      }
   1.249 +      return true;
   1.250 +    }
   1.251 +    
   1.252 +
   1.253 +  }; //class MinCostFlow
   1.254 +
   1.255 +  ///@}
   1.256 +
   1.257 +} //namespace lemon
   1.258 +
   1.259 +#endif //LEMON_MIN_COST_FLOW_H