src/lemon/suurballe.h
changeset 921 818510fa3d99
parent 906 17f31d280385
child 941 186aa53d2802
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/lemon/suurballe.h	Wed Sep 29 15:30:04 2004 +0000
     1.3 @@ -0,0 +1,215 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/suurballe.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_SUURBALLE_H
    1.21 +#define LEMON_SUURBALLE_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +///\file
    1.25 +///\brief An algorithm for finding k paths of minimal total length.
    1.26 +
    1.27 +
    1.28 +#include <lemon/maps.h>
    1.29 +#include <vector>
    1.30 +#include <lemon/min_cost_flow.h>
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +/// \addtogroup flowalgs
    1.35 +/// @{
    1.36 +
    1.37 +  ///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes 
    1.38 +  /// of minimal total length 
    1.39 +  ///
    1.40 +  /// The class \ref lemon::Suurballe implements
    1.41 +  /// an algorithm for finding k edge-disjoint paths
    1.42 +  /// from a given source node to a given target node in an
    1.43 +  /// edge-weighted directed graph having minimal total weight (length).
    1.44 +  ///
    1.45 +  ///\warning Length values should be nonnegative.
    1.46 +  /// 
    1.47 +  ///\param Graph The directed graph type the algorithm runs on.
    1.48 +  ///\param LengthMap The type of the length map (values should be nonnegative).
    1.49 +  ///
    1.50 +  ///\note It it questionable if it is correct to call this method after
    1.51 +  ///%Suurballe for it is just a special case of Edmond's and Karp's algorithm
    1.52 +  ///for finding minimum cost flows. In fact, this implementation is just
    1.53 +  ///wraps the MinCostFlow algorithms. The paper of both %Suurballe and
    1.54 +  ///Edmonds-Karp published in 1972, therefore it is possibly right to
    1.55 +  ///state that they are
    1.56 +  ///independent results. Most frequently this special case is referred as
    1.57 +  ///%Suurballe method in the literature, especially in communication
    1.58 +  ///network context.
    1.59 +  ///\author Attila Bernath
    1.60 +  template <typename Graph, typename LengthMap>
    1.61 +  class Suurballe{
    1.62 +
    1.63 +
    1.64 +    typedef typename LengthMap::ValueType Length;
    1.65 +    
    1.66 +    typedef typename Graph::Node Node;
    1.67 +    typedef typename Graph::NodeIt NodeIt;
    1.68 +    typedef typename Graph::Edge Edge;
    1.69 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.70 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.71 +
    1.72 +    typedef ConstMap<Edge,int> ConstMap;
    1.73 +
    1.74 +    //Input
    1.75 +    const Graph& G;
    1.76 +
    1.77 +    //Auxiliary variables
    1.78 +    //This is the capacity map for the mincostflow problem
    1.79 +    ConstMap const1map;
    1.80 +    //This MinCostFlow instance will actually solve the problem
    1.81 +    MinCostFlow<Graph, LengthMap, ConstMap> mincost_flow;
    1.82 +
    1.83 +    //Container to store found paths
    1.84 +    std::vector< std::vector<Edge> > paths;
    1.85 +
    1.86 +  public :
    1.87 +
    1.88 +
    1.89 +    /// The constructor of the class.
    1.90 +    
    1.91 +    ///\param _G The directed graph the algorithm runs on. 
    1.92 +    ///\param _length The length (weight or cost) of the edges. 
    1.93 +    Suurballe(Graph& _G, LengthMap& _length) : G(_G),
    1.94 +      const1map(1), mincost_flow(_G, _length, const1map){}
    1.95 +
    1.96 +    ///Runs the algorithm.
    1.97 +
    1.98 +    ///Runs the algorithm.
    1.99 +    ///Returns k if there are at least k edge-disjoint paths from s to t.
   1.100 +    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   1.101 +    ///
   1.102 +    ///\param s The source node.
   1.103 +    ///\param t The target node.
   1.104 +    ///\param k How many paths are we looking for?
   1.105 +    ///
   1.106 +    int run(Node s, Node t, int k) {
   1.107 +
   1.108 +      int i = mincost_flow.run(s,t,k);
   1.109 +    
   1.110 +
   1.111 +      //Let's find the paths
   1.112 +      //We put the paths into stl vectors (as an inner representation). 
   1.113 +      //In the meantime we lose the information stored in 'reversed'.
   1.114 +      //We suppose the lengths to be positive now.
   1.115 +
   1.116 +      //We don't want to change the flow of mincost_flow, so we make a copy
   1.117 +      //The name here suggests that the flow has only 0/1 values.
   1.118 +      EdgeIntMap reversed(G); 
   1.119 +
   1.120 +      for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
   1.121 +	reversed[e] = mincost_flow.getFlow()[e];
   1.122 +      
   1.123 +      paths.clear();
   1.124 +      //total_length=0;
   1.125 +      paths.resize(k);
   1.126 +      for (int j=0; j<i; ++j){
   1.127 +	Node n=s;
   1.128 +	OutEdgeIt e;
   1.129 +
   1.130 +	while (n!=t){
   1.131 +
   1.132 +
   1.133 +	  G.first(e,n);
   1.134 +	  
   1.135 +	  while (!reversed[e]){
   1.136 +	    ++e;
   1.137 +	  }
   1.138 +	  n = G.head(e);
   1.139 +	  paths[j].push_back(e);
   1.140 +	  //total_length += length[e];
   1.141 +	  reversed[e] = 1-reversed[e];
   1.142 +	}
   1.143 +	
   1.144 +      }
   1.145 +      return i;
   1.146 +    }
   1.147 +
   1.148 +    
   1.149 +    ///Returns the total length of the paths
   1.150 +    
   1.151 +    ///This function gives back the total length of the found paths.
   1.152 +    ///\pre \ref run() must
   1.153 +    ///be called before using this function.
   1.154 +    Length totalLength(){
   1.155 +      return mincost_flow.totalLength();
   1.156 +    }
   1.157 +
   1.158 +    ///Returns the found flow.
   1.159 +
   1.160 +    ///This function returns a const reference to the EdgeMap \c flow.
   1.161 +    ///\pre \ref run() must
   1.162 +    ///be called before using this function.
   1.163 +    const EdgeIntMap &getFlow() const { return mincost_flow.flow;}
   1.164 +
   1.165 +    /// Returns the optimal dual solution
   1.166 +    
   1.167 +    ///This function returns a const reference to the NodeMap
   1.168 +    ///\c potential (the dual solution).
   1.169 +    /// \pre \ref run() must be called before using this function.
   1.170 +    const EdgeIntMap &getPotential() const { return mincost_flow.potential;}
   1.171 +
   1.172 +    ///Checks whether the complementary slackness holds.
   1.173 +
   1.174 +    ///This function checks, whether the given solution is optimal.
   1.175 +    ///It should return true after calling \ref run() 
   1.176 +    ///Currently this function only checks optimality,
   1.177 +    ///doesn't bother with feasibility
   1.178 +    ///It is meant for testing purposes.
   1.179 +    ///
   1.180 +    bool checkComplementarySlackness(){
   1.181 +      return mincost_flow.checkComplementarySlackness();
   1.182 +    }
   1.183 +
   1.184 +    ///Read the found paths.
   1.185 +    
   1.186 +    ///This function gives back the \c j-th path in argument p.
   1.187 +    ///Assumes that \c run() has been run and nothing changed since then.
   1.188 +    /// \warning It is assumed that \c p is constructed to
   1.189 +    ///be a path of graph \c G.
   1.190 +    ///If \c j is not less than the result of previous \c run,
   1.191 +    ///then the result here will be an empty path (\c j can be 0 as well).
   1.192 +    ///
   1.193 +    ///\param Path The type of the path structure to put the result to (must meet lemon path concept).
   1.194 +    ///\param p The path to put the result to 
   1.195 +    ///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively)
   1.196 +    template<typename Path>
   1.197 +    void getPath(Path& p, size_t j){
   1.198 +
   1.199 +      p.clear();
   1.200 +      if (j>paths.size()-1){
   1.201 +	return;
   1.202 +      }
   1.203 +      typename Path::Builder B(p);
   1.204 +      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   1.205 +	  i!=paths[j].end(); ++i ){
   1.206 +	B.pushBack(*i);
   1.207 +      }
   1.208 +
   1.209 +      B.commit();
   1.210 +    }
   1.211 +
   1.212 +  }; //class Suurballe
   1.213 +
   1.214 +  ///@}
   1.215 +
   1.216 +} //namespace lemon
   1.217 +
   1.218 +#endif //LEMON_SUURBALLE_H