src/work/athos/minlengthpaths.h
changeset 608 84b04b70ad89
parent 607 327f7cf13843
child 609 0566ac97809b
     1.1 --- a/src/work/athos/minlengthpaths.h	Tue May 11 15:42:11 2004 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,164 +0,0 @@
     1.4 -// -*- c++ -*-
     1.5 -#ifndef HUGO_MINLENGTHPATHS_H
     1.6 -#define HUGO_MINLENGTHPATHS_H
     1.7 -
     1.8 -///\ingroup galgs
     1.9 -///\file
    1.10 -///\brief An algorithm for finding k paths of minimal total length.
    1.11 -
    1.12 -#include <iostream>
    1.13 -//#include <hugo/dijkstra.h>
    1.14 -//#include <hugo/graph_wrapper.h>
    1.15 -#include <hugo/maps.h>
    1.16 -#include <vector>
    1.17 -#include <mincostflows.h>
    1.18 -#include <for_each_macros.h>
    1.19 -
    1.20 -namespace hugo {
    1.21 -
    1.22 -/// \addtogroup galgs
    1.23 -/// @{
    1.24 -
    1.25 -  ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    1.26 -  /// of minimal total length 
    1.27 -  ///
    1.28 -  /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    1.29 -  /// an algorithm for finding k edge-disjoint paths
    1.30 -  /// from a given source node to a given target node in an
    1.31 -  /// edge-weighted directed graph having minimal total weigth (length).
    1.32 -  ///
    1.33 -  ///\warning It is assumed that the lengths are positive, since the
    1.34 -  /// general flow-decomposition is not implemented yet.
    1.35 -  ///
    1.36 -  ///\author Attila Bernath
    1.37 -  template <typename Graph, typename LengthMap>
    1.38 -  class MinLengthPaths{
    1.39 -
    1.40 -
    1.41 -    typedef typename LengthMap::ValueType Length;
    1.42 -    
    1.43 -    typedef typename Graph::Node Node;
    1.44 -    typedef typename Graph::NodeIt NodeIt;
    1.45 -    typedef typename Graph::Edge Edge;
    1.46 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.47 -    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.48 -
    1.49 -    typedef ConstMap<Edge,int> ConstMap;
    1.50 -
    1.51 -    //Input
    1.52 -    const Graph& G;
    1.53 -
    1.54 -    //Auxiliary variables
    1.55 -    //This is the capacity map for the mincostflow problem
    1.56 -    ConstMap const1map;
    1.57 -    //This MinCostFlows instance will actually solve the problem
    1.58 -    MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow;
    1.59 -
    1.60 -    //Container to store found paths
    1.61 -    std::vector< std::vector<Edge> > paths;
    1.62 -
    1.63 -  public :
    1.64 -
    1.65 -
    1.66 -    MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
    1.67 -      const1map(1), mincost_flow(_G, _length, const1map){}
    1.68 -
    1.69 -    ///Runs the algorithm.
    1.70 -
    1.71 -    ///Runs the algorithm.
    1.72 -    ///Returns k if there are at least k edge-disjoint paths from s to t.
    1.73 -   ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    1.74 -    int run(Node s, Node t, int k) {
    1.75 -
    1.76 -      int i = mincost_flow.run(s,t,k);
    1.77 -      
    1.78 -
    1.79 -
    1.80 -      //Let's find the paths
    1.81 -      //We put the paths into stl vectors (as an inner representation). 
    1.82 -      //In the meantime we lose the information stored in 'reversed'.
    1.83 -      //We suppose the lengths to be positive now.
    1.84 -
    1.85 -      //We don't want to change the flow of mincost_flow, so we make a copy
    1.86 -      //The name here suggests that the flow has only 0/1 values.
    1.87 -      EdgeIntMap reversed(G); 
    1.88 -
    1.89 -      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
    1.90 -	reversed[e] = mincost_flow.getFlow()[e];
    1.91 -      }
    1.92 -      
    1.93 -      paths.clear();
    1.94 -      //total_length=0;
    1.95 -      paths.resize(k);
    1.96 -      for (int j=0; j<i; ++j){
    1.97 -	Node n=s;
    1.98 -	OutEdgeIt e;
    1.99 -
   1.100 -	while (n!=t){
   1.101 -
   1.102 -
   1.103 -	  G.first(e,n);
   1.104 -	  
   1.105 -	  while (!reversed[e]){
   1.106 -	    G.next(e);
   1.107 -	  }
   1.108 -	  n = G.head(e);
   1.109 -	  paths[j].push_back(e);
   1.110 -	  //total_length += length[e];
   1.111 -	  reversed[e] = 1-reversed[e];
   1.112 -	}
   1.113 -	
   1.114 -      }
   1.115 -      return i;
   1.116 -    }
   1.117 -
   1.118 -    
   1.119 -    ///This function gives back the total length of the found paths.
   1.120 -    ///Assumes that \c run() has been run and nothing changed since then.
   1.121 -    Length totalLength(){
   1.122 -      return mincost_flow.totalLength();
   1.123 -    }
   1.124 -
   1.125 -    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   1.126 -    ///be called before using this function.
   1.127 -    const EdgeIntMap &getFlow() const { return mincost_flow.flow;}
   1.128 -
   1.129 -  ///Returns a const reference to the NodeMap \c potential (the dual solution).
   1.130 -    /// \pre \ref run() must be called before using this function.
   1.131 -    const EdgeIntMap &getPotential() const { return mincost_flow.potential;}
   1.132 -
   1.133 -    ///This function checks, whether the given solution is optimal
   1.134 -    ///Running after a \c run() should return with true
   1.135 -    ///In this "state of the art" this only checks optimality, doesn't bother with feasibility
   1.136 -    ///
   1.137 -    ///\todo Is this OK here?
   1.138 -    bool checkComplementarySlackness(){
   1.139 -      return mincost_flow.checkComplementarySlackness();
   1.140 -    }
   1.141 -
   1.142 -    ///This function gives back the \c j-th path in argument p.
   1.143 -    ///Assumes that \c run() has been run and nothing changed since then.
   1.144 -    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is not less than the result of previous \c run, then the result here will be an empty path (\c j can be 0 as well).
   1.145 -    template<typename DirPath>
   1.146 -    void getPath(DirPath& p, size_t j){
   1.147 -      
   1.148 -      p.clear();
   1.149 -      if (j>paths.size()-1){
   1.150 -	return;
   1.151 -      }
   1.152 -      typename DirPath::Builder B(p);
   1.153 -      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   1.154 -	  i!=paths[j].end(); ++i ){
   1.155 -	B.pushBack(*i);
   1.156 -      }
   1.157 -
   1.158 -      B.commit();
   1.159 -    }
   1.160 -
   1.161 -  }; //class MinLengthPaths
   1.162 -
   1.163 -  ///@}
   1.164 -
   1.165 -} //namespace hugo
   1.166 -
   1.167 -#endif //HUGO_MINLENGTHPATHS_H