src/work/athos/lp/lp_solver_wrapper.h
changeset 1240 88a2ab6bfc4a
parent 1015 e3bb0e118bb4
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/work/athos/lp/lp_solver_wrapper.h	Tue Mar 22 11:45:47 2005 +0000
     1.3 @@ -0,0 +1,431 @@
     1.4 +// -*- c++ -*-
     1.5 +#ifndef LEMON_LP_SOLVER_WRAPPER_H
     1.6 +#define LEMON_LP_SOLVER_WRAPPER_H
     1.7 +
     1.8 +///\ingroup misc
     1.9 +///\file
    1.10 +///\brief Dijkstra algorithm.
    1.11 +
    1.12 +// #include <stdio.h>
    1.13 +#include <stdlib.h>
    1.14 +// #include <stdio>
    1.15 +//#include <stdlib>
    1.16 +extern "C" {
    1.17 +#include "glpk.h"
    1.18 +}
    1.19 +
    1.20 +#include <iostream>
    1.21 +#include <vector>
    1.22 +#include <string>
    1.23 +#include <list>
    1.24 +#include <memory>
    1.25 +#include <utility>
    1.26 +
    1.27 +//#include <sage_graph.h>
    1.28 +//#include <lemon/list_graph.h>
    1.29 +//#include <lemon/graph_wrapper.h>
    1.30 +#include <lemon/invalid.h>
    1.31 +//#include <bfs_dfs.h>
    1.32 +//#include <stp.h>
    1.33 +//#include <lemon/max_flow.h>
    1.34 +//#include <augmenting_flow.h>
    1.35 +//#include <iter_map.h>
    1.36 +
    1.37 +using std::cout;
    1.38 +using std::cin;
    1.39 +using std::endl;
    1.40 +
    1.41 +namespace lemon {
    1.42 +
    1.43 +  
    1.44 +  /// \addtogroup misc
    1.45 +  /// @{
    1.46 +
    1.47 +  /// \brief A partitioned vector with iterable classes.
    1.48 +  ///
    1.49 +  /// This class implements a container in which the data is stored in an 
    1.50 +  /// stl vector, the range is partitioned into sets and each set is 
    1.51 +  /// doubly linked in a list. 
    1.52 +  /// That is, each class is iterable by lemon iterators, and any member of 
    1.53 +  /// the vector can bo moved to an other class.
    1.54 +  template <typename T>
    1.55 +  class IterablePartition {
    1.56 +  protected:
    1.57 +    struct Node {
    1.58 +      T data;
    1.59 +      int prev; //invalid az -1
    1.60 +      int next; 
    1.61 +    };
    1.62 +    std::vector<Node> nodes;
    1.63 +    struct Tip {
    1.64 +      int first;
    1.65 +      int last;
    1.66 +    };
    1.67 +    std::vector<Tip> tips;
    1.68 +  public:
    1.69 +    /// The classes are indexed by integers from \c 0 to \c classNum()-1.
    1.70 +    int classNum() const { return tips.size(); }
    1.71 +    /// This lemon style iterator iterates through a class. 
    1.72 +    class ClassIt;
    1.73 +    /// Constructor. The number of classes is to be given which is fixed 
    1.74 +    /// over the life of the container. 
    1.75 +    /// The partition classes are indexed from 0 to class_num-1. 
    1.76 +    IterablePartition(int class_num) { 
    1.77 +      for (int i=0; i<class_num; ++i) {
    1.78 +	Tip t;
    1.79 +	t.first=t.last=-1;
    1.80 +	tips.push_back(t);
    1.81 +      }
    1.82 +    }
    1.83 +  protected:
    1.84 +    void befuz(ClassIt it, int class_id) {
    1.85 +      if (tips[class_id].first==-1) {
    1.86 +	if (tips[class_id].last==-1) {
    1.87 +	  nodes[it.i].prev=nodes[it.i].next=-1;
    1.88 +	  tips[class_id].first=tips[class_id].last=it.i;
    1.89 +	}
    1.90 +      } else {
    1.91 +	nodes[it.i].prev=tips[class_id].last;
    1.92 +	nodes[it.i].next=-1;
    1.93 +	nodes[tips[class_id].last].next=it.i;
    1.94 +	tips[class_id].last=it.i;
    1.95 +      }
    1.96 +    }
    1.97 +    void kifuz(ClassIt it, int class_id) {
    1.98 +      if (tips[class_id].first==it.i) {
    1.99 +	if (tips[class_id].last==it.i) {
   1.100 +	  tips[class_id].first=tips[class_id].last=-1;
   1.101 +	} else {
   1.102 +	  tips[class_id].first=nodes[it.i].next;
   1.103 +	  nodes[nodes[it.i].next].prev=-1;
   1.104 +	}
   1.105 +      } else {
   1.106 +	if (tips[class_id].last==it.i) {
   1.107 +	  tips[class_id].last=nodes[it.i].prev;
   1.108 +	  nodes[nodes[it.i].prev].next=-1;
   1.109 +	} else {
   1.110 +	  nodes[nodes[it.i].next].prev=nodes[it.i].prev;
   1.111 +	  nodes[nodes[it.i].prev].next=nodes[it.i].next;
   1.112 +	}
   1.113 +      }
   1.114 +    }
   1.115 +  public:
   1.116 +    /// A new element with data \c t is pushed into the vector and into class 
   1.117 +    /// \c class_id.
   1.118 +    ClassIt push_back(const T& t, int class_id) { 
   1.119 +      Node n;
   1.120 +      n.data=t;
   1.121 +      nodes.push_back(n);
   1.122 +      int i=nodes.size()-1;
   1.123 +      befuz(i, class_id);
   1.124 +      return i;
   1.125 +    }
   1.126 +    /// A member is moved to an other class.
   1.127 +    void set(ClassIt it, int old_class_id, int new_class_id) {
   1.128 +      kifuz(it.i, old_class_id);
   1.129 +      befuz(it.i, new_class_id);
   1.130 +    }
   1.131 +    /// Returns the data pointed by \c it.
   1.132 +    T& operator[](ClassIt it) { return nodes[it.i].data; }
   1.133 +    /// Returns the data pointed by \c it.
   1.134 +    const T& operator[](ClassIt it) const { return nodes[it.i].data; }
   1.135 +    ///.
   1.136 +    class ClassIt {
   1.137 +      friend class IterablePartition;
   1.138 +    protected:
   1.139 +      int i;
   1.140 +    public:
   1.141 +      /// Default constructor.
   1.142 +      ClassIt() { }
   1.143 +      /// This constructor constructs an iterator which points
   1.144 +      /// to the member of th container indexed by the integer _i.
   1.145 +      ClassIt(const int& _i) : i(_i) { }
   1.146 +      /// Invalid constructor.
   1.147 +      ClassIt(const Invalid&) : i(-1) { }
   1.148 +    };
   1.149 +    /// First member of class \c class_id.
   1.150 +    ClassIt& first(ClassIt& it, int class_id) const {
   1.151 +      it.i=tips[class_id].first;
   1.152 +      return it;
   1.153 +    }
   1.154 +    /// Next member.
   1.155 +    ClassIt& next(ClassIt& it) const {
   1.156 +      it.i=nodes[it.i].next;
   1.157 +      return it;
   1.158 +    }
   1.159 +    /// True iff the iterator is valid.
   1.160 +    bool valid(const ClassIt& it) const { return it.i!=-1; }
   1.161 +  };
   1.162 +  
   1.163 +  /// \brief Wrappers for LP solvers
   1.164 +  /// 
   1.165 +  /// This class implements a lemon wrapper for glpk.
   1.166 +  /// Later other LP-solvers will be wrapped into lemon.
   1.167 +  /// The aim of this class is to give a general surface to different 
   1.168 +  /// solvers, i.e. it makes possible to write algorithms using LP's, 
   1.169 +  /// in which the solver can be changed to an other one easily.
   1.170 +  class LPSolverWrapper {
   1.171 +  public:
   1.172 +
   1.173 +//   class Row {
   1.174 +//   protected:
   1.175 +//     int i;
   1.176 +//   public:
   1.177 +//     Row() { }
   1.178 +//     Row(const Invalid&) : i(0) { }
   1.179 +//     Row(const int& _i) : i(_i) { }
   1.180 +//     operator int() const { return i; }
   1.181 +//   };
   1.182 +//   class RowIt : public Row {
   1.183 +//   public:
   1.184 +//     RowIt(const Row& row) : Row(row) { }
   1.185 +//   };
   1.186 +
   1.187 +//   class Col {
   1.188 +//   protected:
   1.189 +//     int i;
   1.190 +//   public:
   1.191 +//     Col() { }
   1.192 +//     Col(const Invalid&) : i(0) { }
   1.193 +//     Col(const int& _i) : i(_i) { }
   1.194 +//     operator int() const { return i; }
   1.195 +//   };
   1.196 +//   class ColIt : public Col {
   1.197 +//     ColIt(const Col& col) : Col(col) { }
   1.198 +//   };
   1.199 +
   1.200 +  public:
   1.201 +    ///.
   1.202 +    LPX* lp;
   1.203 +    ///.
   1.204 +    typedef IterablePartition<int>::ClassIt RowIt;
   1.205 +    ///.
   1.206 +    IterablePartition<int> row_iter_map;
   1.207 +    ///.
   1.208 +    typedef IterablePartition<int>::ClassIt ColIt;
   1.209 +    ///.
   1.210 +    IterablePartition<int> col_iter_map;
   1.211 +    //std::vector<int> row_id_to_lp_row_id;
   1.212 +    //std::vector<int> col_id_to_lp_col_id;
   1.213 +    ///.
   1.214 +    const int VALID_ID;
   1.215 +    ///.
   1.216 +    const int INVALID_ID;
   1.217 +
   1.218 +  public:
   1.219 +    ///.
   1.220 +    LPSolverWrapper() : lp(lpx_create_prob()), 
   1.221 +			row_iter_map(2), 
   1.222 +			col_iter_map(2), 
   1.223 +			//row_id_to_lp_row_id(), col_id_to_lp_col_id(), 
   1.224 +			VALID_ID(0), INVALID_ID(1) {
   1.225 +      lpx_set_int_parm(lp, LPX_K_DUAL, 1);
   1.226 +    }
   1.227 +    ///.
   1.228 +    ~LPSolverWrapper() {
   1.229 +      lpx_delete_prob(lp);
   1.230 +    }
   1.231 +    ///.
   1.232 +    void setMinimize() { 
   1.233 +      lpx_set_obj_dir(lp, LPX_MIN);
   1.234 +    }
   1.235 +    ///.
   1.236 +    void setMaximize() { 
   1.237 +      lpx_set_obj_dir(lp, LPX_MAX);
   1.238 +    }
   1.239 +    ///.
   1.240 +    ColIt addCol() {
   1.241 +      int i=lpx_add_cols(lp, 1);  
   1.242 +      ColIt col_it;
   1.243 +      col_iter_map.first(col_it, INVALID_ID);
   1.244 +      if (col_iter_map.valid(col_it)) { //van hasznalhato hely
   1.245 +	col_iter_map.set(col_it, INVALID_ID, VALID_ID);
   1.246 +	col_iter_map[col_it]=i;
   1.247 +	//col_id_to_lp_col_id[col_iter_map[col_it]]=i;
   1.248 +      } else { //a cucc vegere kell inzertalni mert nincs szabad hely
   1.249 +	//col_id_to_lp_col_id.push_back(i);
   1.250 +	//int j=col_id_to_lp_col_id.size()-1;
   1.251 +	col_it=col_iter_map.push_back(i, VALID_ID);
   1.252 +      }
   1.253 +//    edge_index_map.set(e, i);
   1.254 +//    lpx_set_col_bnds(lp, i, LPX_DB, 0.0, 1.0);
   1.255 +//    lpx_set_obj_coef(lp, i, cost[e]);    
   1.256 +      return col_it;
   1.257 +    }
   1.258 +    ///.
   1.259 +    RowIt addRow() {
   1.260 +      int i=lpx_add_rows(lp, 1);  
   1.261 +      RowIt row_it;
   1.262 +      row_iter_map.first(row_it, INVALID_ID);
   1.263 +      if (row_iter_map.valid(row_it)) { //van hasznalhato hely
   1.264 +	row_iter_map.set(row_it, INVALID_ID, VALID_ID);
   1.265 +	row_iter_map[row_it]=i;
   1.266 +      } else { //a cucc vegere kell inzertalni mert nincs szabad hely
   1.267 +	row_it=row_iter_map.push_back(i, VALID_ID);
   1.268 +      }
   1.269 +      return row_it;
   1.270 +    }
   1.271 +    //pair<RowIt, double>-bol kell megadni egy std range-et
   1.272 +    ///.
   1.273 +    template <typename Begin, typename End>
   1.274 +    void setColCoeffs(const ColIt& col_it, 
   1.275 +		      Begin begin, End end) {
   1.276 +      int mem_length=1+lpx_get_num_rows(lp);
   1.277 +      int* indices = new int[mem_length];
   1.278 +      double* doubles = new double[mem_length];
   1.279 +      int length=0;
   1.280 +      for ( ; begin!=end; ++begin) {
   1.281 +	++length;
   1.282 +	indices[length]=row_iter_map[begin->first];
   1.283 +	doubles[length]=begin->second;
   1.284 +      }
   1.285 +      lpx_set_mat_col(lp, col_iter_map[col_it], length, indices, doubles);
   1.286 +      delete [] indices;
   1.287 +      delete [] doubles;
   1.288 +    }
   1.289 +    //pair<ColIt, double>-bol kell megadni egy std range-et
   1.290 +    ///.
   1.291 +    template <typename Begin, typename End>
   1.292 +    void setRowCoeffs(const RowIt& row_it, 
   1.293 +		      Begin begin, End end) {
   1.294 +      int mem_length=1+lpx_get_num_cols(lp);
   1.295 +      int* indices = new int[mem_length];
   1.296 +      double* doubles = new double[mem_length];
   1.297 +      int length=0;
   1.298 +      for ( ; begin!=end; ++begin) {
   1.299 +	++length;
   1.300 +	indices[length]=col_iter_map[begin->first];
   1.301 +	doubles[length]=begin->second;
   1.302 +      }
   1.303 +      lpx_set_mat_row(lp, row_iter_map[row_it], length, indices, doubles);
   1.304 +      delete [] indices;
   1.305 +      delete [] doubles;
   1.306 +    }
   1.307 +    ///.
   1.308 +    void eraseCol(const ColIt& col_it) {
   1.309 +      col_iter_map.set(col_it, VALID_ID, INVALID_ID);
   1.310 +      int cols[2];
   1.311 +      cols[1]=col_iter_map[col_it];
   1.312 +      lpx_del_cols(lp, 1, cols);
   1.313 +      col_iter_map[col_it]=0; //glpk specifikus
   1.314 +      ColIt it;
   1.315 +      for (col_iter_map.first(it, VALID_ID); 
   1.316 +	   col_iter_map.valid(it); col_iter_map.next(it)) {
   1.317 +	if (col_iter_map[it]>cols[1]) --col_iter_map[it];
   1.318 +      }
   1.319 +    }
   1.320 +    ///.
   1.321 +    void eraseRow(const RowIt& row_it) {
   1.322 +      row_iter_map.set(row_it, VALID_ID, INVALID_ID);
   1.323 +      int rows[2];
   1.324 +      rows[1]=row_iter_map[row_it];
   1.325 +      lpx_del_rows(lp, 1, rows);
   1.326 +      row_iter_map[row_it]=0; //glpk specifikus
   1.327 +      RowIt it;
   1.328 +      for (row_iter_map.first(it, VALID_ID); 
   1.329 +	   row_iter_map.valid(it); row_iter_map.next(it)) {
   1.330 +	if (row_iter_map[it]>rows[1]) --row_iter_map[it];
   1.331 +      }
   1.332 +    }
   1.333 +    ///.
   1.334 +    void setColBounds(const ColIt& col_it, int bound_type, 
   1.335 +		      double lo, double up) {
   1.336 +      lpx_set_col_bnds(lp, col_iter_map[col_it], bound_type, lo, up);
   1.337 +    }
   1.338 +    ///.
   1.339 +    double getObjCoef(const ColIt& col_it) { 
   1.340 +      return lpx_get_obj_coef(lp, col_iter_map[col_it]);
   1.341 +    }
   1.342 +    ///.
   1.343 +    void setRowBounds(const RowIt& row_it, int bound_type, 
   1.344 +		      double lo, double up) {
   1.345 +      lpx_set_row_bnds(lp, row_iter_map[row_it], bound_type, lo, up);
   1.346 +    }
   1.347 +    ///.
   1.348 +    void setObjCoef(const ColIt& col_it, double obj_coef) { 
   1.349 +      lpx_set_obj_coef(lp, col_iter_map[col_it], obj_coef);
   1.350 +    }
   1.351 +    ///.
   1.352 +    void solveSimplex() { lpx_simplex(lp); }
   1.353 +    ///.
   1.354 +    void solvePrimalSimplex() { lpx_simplex(lp); }
   1.355 +    ///.
   1.356 +    void solveDualSimplex() { lpx_simplex(lp); }
   1.357 +    ///.
   1.358 +    double getPrimal(const ColIt& col_it) {
   1.359 +      return lpx_get_col_prim(lp, col_iter_map[col_it]);
   1.360 +    }
   1.361 +    ///.
   1.362 +    double getObjVal() { return lpx_get_obj_val(lp); }
   1.363 +    ///.
   1.364 +    int rowNum() const { return lpx_get_num_rows(lp); }
   1.365 +    ///.
   1.366 +    int colNum() const { return lpx_get_num_cols(lp); }
   1.367 +    ///.
   1.368 +    int warmUp() { return lpx_warm_up(lp); }
   1.369 +    ///.
   1.370 +    void printWarmUpStatus(int i) {
   1.371 +      switch (i) {
   1.372 +	case LPX_E_OK: cout << "LPX_E_OK" << endl; break;
   1.373 +	case LPX_E_EMPTY: cout << "LPX_E_EMPTY" << endl; break;	
   1.374 +	case LPX_E_BADB: cout << "LPX_E_BADB" << endl; break;
   1.375 +	case LPX_E_SING: cout << "LPX_E_SING" << endl; break;
   1.376 +      }
   1.377 +    }
   1.378 +    ///.
   1.379 +    int getPrimalStatus() { return lpx_get_prim_stat(lp); }
   1.380 +    ///.
   1.381 +    void printPrimalStatus(int i) {
   1.382 +      switch (i) {
   1.383 +	case LPX_P_UNDEF: cout << "LPX_P_UNDEF" << endl; break;
   1.384 +	case LPX_P_FEAS: cout << "LPX_P_FEAS" << endl; break;	
   1.385 +	case LPX_P_INFEAS: cout << "LPX_P_INFEAS" << endl; break;
   1.386 +	case LPX_P_NOFEAS: cout << "LPX_P_NOFEAS" << endl; break;
   1.387 +      }
   1.388 +    }
   1.389 +    ///.
   1.390 +    int getDualStatus() { return lpx_get_dual_stat(lp); }
   1.391 +    ///.
   1.392 +    void printDualStatus(int i) {
   1.393 +      switch (i) {
   1.394 +	case LPX_D_UNDEF: cout << "LPX_D_UNDEF" << endl; break;
   1.395 +	case LPX_D_FEAS: cout << "LPX_D_FEAS" << endl; break;	
   1.396 +	case LPX_D_INFEAS: cout << "LPX_D_INFEAS" << endl; break;
   1.397 +	case LPX_D_NOFEAS: cout << "LPX_D_NOFEAS" << endl; break;
   1.398 +      }
   1.399 +    }
   1.400 +    /// Returns the status of the slack variable assigned to row \c row_it.
   1.401 +    int getRowStat(const RowIt& row_it) { 
   1.402 +      return lpx_get_row_stat(lp, row_iter_map[row_it]); 
   1.403 +    }
   1.404 +    ///.
   1.405 +    void printRowStatus(int i) {
   1.406 +      switch (i) {
   1.407 +	case LPX_BS: cout << "LPX_BS" << endl; break;
   1.408 +	case LPX_NL: cout << "LPX_NL" << endl; break;	
   1.409 +	case LPX_NU: cout << "LPX_NU" << endl; break;
   1.410 +	case LPX_NF: cout << "LPX_NF" << endl; break;
   1.411 +	case LPX_NS: cout << "LPX_NS" << endl; break;
   1.412 +      }
   1.413 +    }
   1.414 +    /// Returns the status of the variable assigned to column \c col_it.
   1.415 +    int getColStat(const ColIt& col_it) { 
   1.416 +      return lpx_get_col_stat(lp, col_iter_map[col_it]); 
   1.417 +    }
   1.418 +    ///.
   1.419 +    void printColStatus(int i) {
   1.420 +      switch (i) {
   1.421 +	case LPX_BS: cout << "LPX_BS" << endl; break;
   1.422 +	case LPX_NL: cout << "LPX_NL" << endl; break;	
   1.423 +	case LPX_NU: cout << "LPX_NU" << endl; break;
   1.424 +	case LPX_NF: cout << "LPX_NF" << endl; break;
   1.425 +	case LPX_NS: cout << "LPX_NS" << endl; break;
   1.426 +      }
   1.427 +    }
   1.428 +  };
   1.429 +  
   1.430 +  /// @}
   1.431 +
   1.432 +} //namespace lemon
   1.433 +
   1.434 +#endif //LEMON_LP_SOLVER_WRAPPER_H