lemon/dijkstra.h
changeset 1435 8e85e6bbefdf
parent 1367 a490662291b9
child 1516 4aeda8d11d5e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/dijkstra.h	Mon May 23 04:48:14 2005 +0000
     1.3 @@ -0,0 +1,1074 @@
     1.4 +/* -*- C++ -*-
     1.5 + * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_DIJKSTRA_H
    1.21 +#define LEMON_DIJKSTRA_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +///\file
    1.25 +///\brief Dijkstra algorithm.
    1.26 +///
    1.27 +///\todo getPath() should be implemented! (also for BFS and DFS)
    1.28 +
    1.29 +#include <lemon/list_graph.h>
    1.30 +#include <lemon/bin_heap.h>
    1.31 +#include <lemon/invalid.h>
    1.32 +#include <lemon/error.h>
    1.33 +#include <lemon/maps.h>
    1.34 +
    1.35 +namespace lemon {
    1.36 +
    1.37 +
    1.38 +  
    1.39 +  ///Default traits class of Dijkstra class.
    1.40 +
    1.41 +  ///Default traits class of Dijkstra class.
    1.42 +  ///\param GR Graph type.
    1.43 +  ///\param LM Type of length map.
    1.44 +  template<class GR, class LM>
    1.45 +  struct DijkstraDefaultTraits
    1.46 +  {
    1.47 +    ///The graph type the algorithm runs on. 
    1.48 +    typedef GR Graph;
    1.49 +    ///The type of the map that stores the edge lengths.
    1.50 +
    1.51 +    ///The type of the map that stores the edge lengths.
    1.52 +    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    1.53 +    typedef LM LengthMap;
    1.54 +    //The type of the length of the edges.
    1.55 +    typedef typename LM::Value Value;
    1.56 +    ///The heap type used by Dijkstra algorithm.
    1.57 +
    1.58 +    ///The heap type used by Dijkstra algorithm.
    1.59 +    ///
    1.60 +    ///\sa BinHeap
    1.61 +    ///\sa Dijkstra
    1.62 +    typedef BinHeap<typename Graph::Node,
    1.63 +		    typename LM::Value,
    1.64 +		    typename GR::template NodeMap<int>,
    1.65 +		    std::less<Value> > Heap;
    1.66 +
    1.67 +    ///\brief The type of the map that stores the last
    1.68 +    ///edges of the shortest paths.
    1.69 +    /// 
    1.70 +    ///The type of the map that stores the last
    1.71 +    ///edges of the shortest paths.
    1.72 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    1.73 +    ///
    1.74 +    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    1.75 +    ///Instantiates a PredMap.
    1.76 + 
    1.77 +    ///This function instantiates a \ref PredMap. 
    1.78 +    ///\param G is the graph, to which we would like to define the PredMap.
    1.79 +    ///\todo The graph alone may be insufficient for the initialization
    1.80 +    static PredMap *createPredMap(const GR &G) 
    1.81 +    {
    1.82 +      return new PredMap(G);
    1.83 +    }
    1.84 +//     ///\brief The type of the map that stores the last but one
    1.85 +//     ///nodes of the shortest paths.
    1.86 +//     ///
    1.87 +//     ///The type of the map that stores the last but one
    1.88 +//     ///nodes of the shortest paths.
    1.89 +//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    1.90 +//     ///
    1.91 +//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    1.92 +//     ///Instantiates a PredNodeMap.
    1.93 +    
    1.94 +//     ///This function instantiates a \ref PredNodeMap. 
    1.95 +//     ///\param G is the graph, to which
    1.96 +//     ///we would like to define the \ref PredNodeMap
    1.97 +//     static PredNodeMap *createPredNodeMap(const GR &G)
    1.98 +//     {
    1.99 +//       return new PredNodeMap();
   1.100 +//     }
   1.101 +
   1.102 +    ///The type of the map that stores whether a nodes is processed.
   1.103 + 
   1.104 +    ///The type of the map that stores whether a nodes is processed.
   1.105 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.106 +    ///By default it is a NullMap.
   1.107 +    ///\todo If it is set to a real map,
   1.108 +    ///Dijkstra::processed() should read this.
   1.109 +    ///\todo named parameter to set this type, function to read and write.
   1.110 +    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   1.111 +    ///Instantiates a ProcessedMap.
   1.112 + 
   1.113 +    ///This function instantiates a \ref ProcessedMap. 
   1.114 +    ///\param G is the graph, to which
   1.115 +    ///we would like to define the \ref ProcessedMap
   1.116 +    static ProcessedMap *createProcessedMap(const GR &)
   1.117 +    {
   1.118 +      return new ProcessedMap();
   1.119 +    }
   1.120 +    ///The type of the map that stores the dists of the nodes.
   1.121 + 
   1.122 +    ///The type of the map that stores the dists of the nodes.
   1.123 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.124 +    ///
   1.125 +    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   1.126 +    ///Instantiates a DistMap.
   1.127 + 
   1.128 +    ///This function instantiates a \ref DistMap. 
   1.129 +    ///\param G is the graph, to which we would like to define the \ref DistMap
   1.130 +    static DistMap *createDistMap(const GR &G)
   1.131 +    {
   1.132 +      return new DistMap(G);
   1.133 +    }
   1.134 +  };
   1.135 +  
   1.136 +  ///%Dijkstra algorithm class.
   1.137 +  
   1.138 +  /// \ingroup flowalgs
   1.139 +  ///This class provides an efficient implementation of %Dijkstra algorithm.
   1.140 +  ///The edge lengths are passed to the algorithm using a
   1.141 +  ///\ref concept::ReadMap "ReadMap",
   1.142 +  ///so it is easy to change it to any kind of length.
   1.143 +  ///
   1.144 +  ///The type of the length is determined by the
   1.145 +  ///\ref concept::ReadMap::Value "Value" of the length map.
   1.146 +  ///
   1.147 +  ///It is also possible to change the underlying priority heap.
   1.148 +  ///
   1.149 +  ///\param GR The graph type the algorithm runs on. The default value
   1.150 +  ///is \ref ListGraph. The value of GR is not used directly by
   1.151 +  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   1.152 +  ///\param LM This read-only EdgeMap determines the lengths of the
   1.153 +  ///edges. It is read once for each edge, so the map may involve in
   1.154 +  ///relatively time consuming process to compute the edge length if
   1.155 +  ///it is necessary. The default map type is \ref
   1.156 +  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   1.157 +  ///of LM is not used directly by Dijkstra, it is only passed to \ref
   1.158 +  ///DijkstraDefaultTraits.  \param TR Traits class to set
   1.159 +  ///various data types used by the algorithm.  The default traits
   1.160 +  ///class is \ref DijkstraDefaultTraits
   1.161 +  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   1.162 +  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   1.163 +  ///class.
   1.164 +  ///
   1.165 +  ///\author Jacint Szabo and Alpar Juttner
   1.166 +  ///\todo A compare object would be nice.
   1.167 +
   1.168 +#ifdef DOXYGEN
   1.169 +  template <typename GR,
   1.170 +	    typename LM,
   1.171 +	    typename TR>
   1.172 +#else
   1.173 +  template <typename GR=ListGraph,
   1.174 +	    typename LM=typename GR::template EdgeMap<int>,
   1.175 +	    typename TR=DijkstraDefaultTraits<GR,LM> >
   1.176 +#endif
   1.177 +  class Dijkstra {
   1.178 +  public:
   1.179 +    /**
   1.180 +     * \brief \ref Exception for uninitialized parameters.
   1.181 +     *
   1.182 +     * This error represents problems in the initialization
   1.183 +     * of the parameters of the algorithms.
   1.184 +     */
   1.185 +    class UninitializedParameter : public lemon::UninitializedParameter {
   1.186 +    public:
   1.187 +      virtual const char* exceptionName() const {
   1.188 +	return "lemon::Dijkstra::UninitializedParameter";
   1.189 +      }
   1.190 +    };
   1.191 +
   1.192 +    typedef TR Traits;
   1.193 +    ///The type of the underlying graph.
   1.194 +    typedef typename TR::Graph Graph;
   1.195 +    ///\e
   1.196 +    typedef typename Graph::Node Node;
   1.197 +    ///\e
   1.198 +    typedef typename Graph::NodeIt NodeIt;
   1.199 +    ///\e
   1.200 +    typedef typename Graph::Edge Edge;
   1.201 +    ///\e
   1.202 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
   1.203 +    
   1.204 +    ///The type of the length of the edges.
   1.205 +    typedef typename TR::LengthMap::Value Value;
   1.206 +    ///The type of the map that stores the edge lengths.
   1.207 +    typedef typename TR::LengthMap LengthMap;
   1.208 +    ///\brief The type of the map that stores the last
   1.209 +    ///edges of the shortest paths.
   1.210 +    typedef typename TR::PredMap PredMap;
   1.211 +//     ///\brief The type of the map that stores the last but one
   1.212 +//     ///nodes of the shortest paths.
   1.213 +//     typedef typename TR::PredNodeMap PredNodeMap;
   1.214 +    ///The type of the map indicating if a node is processed.
   1.215 +    typedef typename TR::ProcessedMap ProcessedMap;
   1.216 +    ///The type of the map that stores the dists of the nodes.
   1.217 +    typedef typename TR::DistMap DistMap;
   1.218 +    ///The heap type used by the dijkstra algorithm.
   1.219 +    typedef typename TR::Heap Heap;
   1.220 +  private:
   1.221 +    /// Pointer to the underlying graph.
   1.222 +    const Graph *G;
   1.223 +    /// Pointer to the length map
   1.224 +    const LengthMap *length;
   1.225 +    ///Pointer to the map of predecessors edges.
   1.226 +    PredMap *_pred;
   1.227 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   1.228 +    bool local_pred;
   1.229 +//     ///Pointer to the map of predecessors nodes.
   1.230 +//     PredNodeMap *_predNode;
   1.231 +//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   1.232 +//     bool local_predNode;
   1.233 +    ///Pointer to the map of distances.
   1.234 +    DistMap *_dist;
   1.235 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   1.236 +    bool local_dist;
   1.237 +    ///Pointer to the map of processed status of the nodes.
   1.238 +    ProcessedMap *_processed;
   1.239 +    ///Indicates if \ref _processed is locally allocated (\c true) or not.
   1.240 +    bool local_processed;
   1.241 +
   1.242 +//     ///The source node of the last execution.
   1.243 +//     Node source;
   1.244 +
   1.245 +    ///Creates the maps if necessary.
   1.246 +    
   1.247 +    ///\todo Error if \c G or are \c NULL. What about \c length?
   1.248 +    ///\todo Better memory allocation (instead of new).
   1.249 +    void create_maps() 
   1.250 +    {
   1.251 +      if(!_pred) {
   1.252 +	local_pred = true;
   1.253 +	_pred = Traits::createPredMap(*G);
   1.254 +      }
   1.255 +//       if(!_predNode) {
   1.256 +// 	local_predNode = true;
   1.257 +// 	_predNode = Traits::createPredNodeMap(*G);
   1.258 +//       }
   1.259 +      if(!_dist) {
   1.260 +	local_dist = true;
   1.261 +	_dist = Traits::createDistMap(*G);
   1.262 +      }
   1.263 +      if(!_processed) {
   1.264 +	local_processed = true;
   1.265 +	_processed = Traits::createProcessedMap(*G);
   1.266 +      }
   1.267 +    }
   1.268 +    
   1.269 +  public :
   1.270 + 
   1.271 +    ///\name Named template parameters
   1.272 +
   1.273 +    ///@{
   1.274 +
   1.275 +    template <class T>
   1.276 +    struct DefPredMapTraits : public Traits {
   1.277 +      typedef T PredMap;
   1.278 +      static PredMap *createPredMap(const Graph &G) 
   1.279 +      {
   1.280 +	throw UninitializedParameter();
   1.281 +      }
   1.282 +    };
   1.283 +    ///\ref named-templ-param "Named parameter" for setting PredMap type
   1.284 +
   1.285 +    ///\ref named-templ-param "Named parameter" for setting PredMap type
   1.286 +    ///
   1.287 +    template <class T>
   1.288 +    class DefPredMap : public Dijkstra< Graph,
   1.289 +					LengthMap,
   1.290 +					DefPredMapTraits<T> > { };
   1.291 +    
   1.292 +//     template <class T>
   1.293 +//     struct DefPredNodeMapTraits : public Traits {
   1.294 +//       typedef T PredNodeMap;
   1.295 +//       static PredNodeMap *createPredNodeMap(const Graph &G) 
   1.296 +//       {
   1.297 +// 	throw UninitializedParameter();
   1.298 +//       }
   1.299 +//     };
   1.300 +//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   1.301 +
   1.302 +//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   1.303 +//     ///
   1.304 +//     template <class T>
   1.305 +//     class DefPredNodeMap : public Dijkstra< Graph,
   1.306 +// 					    LengthMap,
   1.307 +// 					    DefPredNodeMapTraits<T> > { };
   1.308 +    
   1.309 +    template <class T>
   1.310 +    struct DefDistMapTraits : public Traits {
   1.311 +      typedef T DistMap;
   1.312 +      static DistMap *createDistMap(const Graph &G) 
   1.313 +      {
   1.314 +	throw UninitializedParameter();
   1.315 +      }
   1.316 +    };
   1.317 +    ///\ref named-templ-param "Named parameter" for setting DistMap type
   1.318 +
   1.319 +    ///\ref named-templ-param "Named parameter" for setting DistMap type
   1.320 +    ///
   1.321 +    template <class T>
   1.322 +    class DefDistMap : public Dijkstra< Graph,
   1.323 +					LengthMap,
   1.324 +					DefDistMapTraits<T> > { };
   1.325 +    
   1.326 +    template <class T>
   1.327 +    struct DefProcessedMapTraits : public Traits {
   1.328 +      typedef T ProcessedMap;
   1.329 +      static ProcessedMap *createProcessedMap(const Graph &G) 
   1.330 +      {
   1.331 +	throw UninitializedParameter();
   1.332 +      }
   1.333 +    };
   1.334 +    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   1.335 +
   1.336 +    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   1.337 +    ///
   1.338 +    template <class T>
   1.339 +    class DefProcessedMap : public Dijkstra< Graph,
   1.340 +					LengthMap,
   1.341 +					DefProcessedMapTraits<T> > { };
   1.342 +    
   1.343 +    struct DefGraphProcessedMapTraits : public Traits {
   1.344 +      typedef typename Graph::template NodeMap<bool> ProcessedMap;
   1.345 +      static ProcessedMap *createProcessedMap(const Graph &G) 
   1.346 +      {
   1.347 +	return new ProcessedMap(G);
   1.348 +      }
   1.349 +    };
   1.350 +    ///\brief \ref named-templ-param "Named parameter"
   1.351 +    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   1.352 +    ///
   1.353 +    ///\ref named-templ-param "Named parameter"
   1.354 +    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   1.355 +    ///If you don't set it explicitely, it will be automatically allocated.
   1.356 +    template <class T>
   1.357 +    class DefProcessedMapToBeDefaultMap :
   1.358 +      public Dijkstra< Graph,
   1.359 +		       LengthMap,
   1.360 +		       DefGraphProcessedMapTraits> { };
   1.361 +    
   1.362 +    ///@}
   1.363 +
   1.364 +
   1.365 +  private:
   1.366 +    typename Graph::template NodeMap<int> _heap_map;
   1.367 +    Heap _heap;
   1.368 +  public:      
   1.369 +    
   1.370 +    ///Constructor.
   1.371 +    
   1.372 +    ///\param _G the graph the algorithm will run on.
   1.373 +    ///\param _length the length map used by the algorithm.
   1.374 +    Dijkstra(const Graph& _G, const LengthMap& _length) :
   1.375 +      G(&_G), length(&_length),
   1.376 +      _pred(NULL), local_pred(false),
   1.377 +//       _predNode(NULL), local_predNode(false),
   1.378 +      _dist(NULL), local_dist(false),
   1.379 +      _processed(NULL), local_processed(false),
   1.380 +      _heap_map(*G,-1),_heap(_heap_map)
   1.381 +    { }
   1.382 +    
   1.383 +    ///Destructor.
   1.384 +    ~Dijkstra() 
   1.385 +    {
   1.386 +      if(local_pred) delete _pred;
   1.387 +//       if(local_predNode) delete _predNode;
   1.388 +      if(local_dist) delete _dist;
   1.389 +      if(local_processed) delete _processed;
   1.390 +    }
   1.391 +
   1.392 +    ///Sets the length map.
   1.393 +
   1.394 +    ///Sets the length map.
   1.395 +    ///\return <tt> (*this) </tt>
   1.396 +    Dijkstra &lengthMap(const LengthMap &m) 
   1.397 +    {
   1.398 +      length = &m;
   1.399 +      return *this;
   1.400 +    }
   1.401 +
   1.402 +    ///Sets the map storing the predecessor edges.
   1.403 +
   1.404 +    ///Sets the map storing the predecessor edges.
   1.405 +    ///If you don't use this function before calling \ref run(),
   1.406 +    ///it will allocate one. The destuctor deallocates this
   1.407 +    ///automatically allocated map, of course.
   1.408 +    ///\return <tt> (*this) </tt>
   1.409 +    Dijkstra &predMap(PredMap &m) 
   1.410 +    {
   1.411 +      if(local_pred) {
   1.412 +	delete _pred;
   1.413 +	local_pred=false;
   1.414 +      }
   1.415 +      _pred = &m;
   1.416 +      return *this;
   1.417 +    }
   1.418 +
   1.419 +//     ///Sets the map storing the predecessor nodes.
   1.420 +
   1.421 +//     ///Sets the map storing the predecessor nodes.
   1.422 +//     ///If you don't use this function before calling \ref run(),
   1.423 +//     ///it will allocate one. The destuctor deallocates this
   1.424 +//     ///automatically allocated map, of course.
   1.425 +//     ///\return <tt> (*this) </tt>
   1.426 +//     Dijkstra &predNodeMap(PredNodeMap &m) 
   1.427 +//     {
   1.428 +//       if(local_predNode) {
   1.429 +// 	delete _predNode;
   1.430 +// 	local_predNode=false;
   1.431 +//       }
   1.432 +//       _predNode = &m;
   1.433 +//       return *this;
   1.434 +//     }
   1.435 +
   1.436 +    ///Sets the map storing the distances calculated by the algorithm.
   1.437 +
   1.438 +    ///Sets the map storing the distances calculated by the algorithm.
   1.439 +    ///If you don't use this function before calling \ref run(),
   1.440 +    ///it will allocate one. The destuctor deallocates this
   1.441 +    ///automatically allocated map, of course.
   1.442 +    ///\return <tt> (*this) </tt>
   1.443 +    Dijkstra &distMap(DistMap &m) 
   1.444 +    {
   1.445 +      if(local_dist) {
   1.446 +	delete _dist;
   1.447 +	local_dist=false;
   1.448 +      }
   1.449 +      _dist = &m;
   1.450 +      return *this;
   1.451 +    }
   1.452 +
   1.453 +  private:
   1.454 +    void finalizeNodeData(Node v,Value dst)
   1.455 +    {
   1.456 +      _processed->set(v,true);
   1.457 +      _dist->set(v, dst);
   1.458 +//       if((*_pred)[v]!=INVALID)
   1.459 +//       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
   1.460 +    }
   1.461 +
   1.462 +  public:
   1.463 +    ///\name Execution control
   1.464 +    ///The simplest way to execute the algorithm is to use
   1.465 +    ///one of the member functions called \c run(...).
   1.466 +    ///\n
   1.467 +    ///If you need more control on the execution,
   1.468 +    ///first you must call \ref init(), then you can add several source nodes
   1.469 +    ///with \ref addSource().
   1.470 +    ///Finally \ref start() will perform the actual path
   1.471 +    ///computation.
   1.472 +
   1.473 +    ///@{
   1.474 +
   1.475 +    ///Initializes the internal data structures.
   1.476 +
   1.477 +    ///Initializes the internal data structures.
   1.478 +    ///
   1.479 +    ///\todo _heap_map's type could also be in the traits class.
   1.480 +    ///\todo The heaps should be able to make themselves empty directly.
   1.481 +    void init()
   1.482 +    {
   1.483 +      create_maps();
   1.484 +      while(!_heap.empty()) _heap.pop();
   1.485 +      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   1.486 +	_pred->set(u,INVALID);
   1.487 +// 	_predNode->set(u,INVALID);
   1.488 +	_processed->set(u,false);
   1.489 +	_heap_map.set(u,Heap::PRE_HEAP);
   1.490 +      }
   1.491 +    }
   1.492 +    
   1.493 +    ///Adds a new source node.
   1.494 +
   1.495 +    ///Adds a new source node to the priority heap.
   1.496 +    ///
   1.497 +    ///The optional second parameter is the initial distance of the node.
   1.498 +    ///
   1.499 +    ///It checks if the node has already been added to the heap and
   1.500 +    ///It is pushed to the heap only if either it was not in the heap
   1.501 +    ///or the shortest path found till then is longer then \c dst.
   1.502 +    void addSource(Node s,Value dst=0)
   1.503 +    {
   1.504 +//       source = s;
   1.505 +      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   1.506 +      else if(_heap[s]<dst) {
   1.507 +	_heap.push(s,dst);
   1.508 +	_pred->set(s,INVALID);
   1.509 +      }
   1.510 +    }
   1.511 +    
   1.512 +    ///Processes the next node in the priority heap
   1.513 +
   1.514 +    ///Processes the next node in the priority heap.
   1.515 +    ///
   1.516 +    ///\warning The priority heap must not be empty!
   1.517 +    void processNextNode()
   1.518 +    {
   1.519 +      Node v=_heap.top(); 
   1.520 +      Value oldvalue=_heap[v];
   1.521 +      _heap.pop();
   1.522 +      finalizeNodeData(v,oldvalue);
   1.523 +      
   1.524 +      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   1.525 +	Node w=G->target(e); 
   1.526 +	switch(_heap.state(w)) {
   1.527 +	case Heap::PRE_HEAP:
   1.528 +	  _heap.push(w,oldvalue+(*length)[e]); 
   1.529 +	  _pred->set(w,e);
   1.530 +//  	  _predNode->set(w,v);
   1.531 +	  break;
   1.532 +	case Heap::IN_HEAP:
   1.533 +	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   1.534 +	    _heap.decrease(w, oldvalue+(*length)[e]); 
   1.535 +	    _pred->set(w,e);
   1.536 +// 	    _predNode->set(w,v);
   1.537 +	  }
   1.538 +	  break;
   1.539 +	case Heap::POST_HEAP:
   1.540 +	  break;
   1.541 +	}
   1.542 +      }
   1.543 +    }
   1.544 +
   1.545 +    ///\brief Returns \c false if there are nodes
   1.546 +    ///to be processed in the priority heap
   1.547 +    ///
   1.548 +    ///Returns \c false if there are nodes
   1.549 +    ///to be processed in the priority heap
   1.550 +    bool emptyQueue() { return _heap.empty(); }
   1.551 +    ///Returns the number of the nodes to be processed in the priority heap
   1.552 +
   1.553 +    ///Returns the number of the nodes to be processed in the priority heap
   1.554 +    ///
   1.555 +    int queueSize() { return _heap.size(); }
   1.556 +    
   1.557 +    ///Executes the algorithm.
   1.558 +
   1.559 +    ///Executes the algorithm.
   1.560 +    ///
   1.561 +    ///\pre init() must be called and at least one node should be added
   1.562 +    ///with addSource() before using this function.
   1.563 +    ///
   1.564 +    ///This method runs the %Dijkstra algorithm from the root node(s)
   1.565 +    ///in order to
   1.566 +    ///compute the
   1.567 +    ///shortest path to each node. The algorithm computes
   1.568 +    ///- The shortest path tree.
   1.569 +    ///- The distance of each node from the root(s).
   1.570 +    ///
   1.571 +    void start()
   1.572 +    {
   1.573 +      while ( !_heap.empty() ) processNextNode();
   1.574 +    }
   1.575 +    
   1.576 +    ///Executes the algorithm until \c dest is reached.
   1.577 +
   1.578 +    ///Executes the algorithm until \c dest is reached.
   1.579 +    ///
   1.580 +    ///\pre init() must be called and at least one node should be added
   1.581 +    ///with addSource() before using this function.
   1.582 +    ///
   1.583 +    ///This method runs the %Dijkstra algorithm from the root node(s)
   1.584 +    ///in order to
   1.585 +    ///compute the
   1.586 +    ///shortest path to \c dest. The algorithm computes
   1.587 +    ///- The shortest path to \c  dest.
   1.588 +    ///- The distance of \c dest from the root(s).
   1.589 +    ///
   1.590 +    void start(Node dest)
   1.591 +    {
   1.592 +      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   1.593 +      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   1.594 +    }
   1.595 +    
   1.596 +    ///Executes the algorithm until a condition is met.
   1.597 +
   1.598 +    ///Executes the algorithm until a condition is met.
   1.599 +    ///
   1.600 +    ///\pre init() must be called and at least one node should be added
   1.601 +    ///with addSource() before using this function.
   1.602 +    ///
   1.603 +    ///\param nm must be a bool (or convertible) node map. The algorithm
   1.604 +    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   1.605 +    template<class NodeBoolMap>
   1.606 +    void start(const NodeBoolMap &nm)
   1.607 +    {
   1.608 +      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   1.609 +      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   1.610 +    }
   1.611 +    
   1.612 +    ///Runs %Dijkstra algorithm from node \c s.
   1.613 +    
   1.614 +    ///This method runs the %Dijkstra algorithm from a root node \c s
   1.615 +    ///in order to
   1.616 +    ///compute the
   1.617 +    ///shortest path to each node. The algorithm computes
   1.618 +    ///- The shortest path tree.
   1.619 +    ///- The distance of each node from the root.
   1.620 +    ///
   1.621 +    ///\note d.run(s) is just a shortcut of the following code.
   1.622 +    ///\code
   1.623 +    ///  d.init();
   1.624 +    ///  d.addSource(s);
   1.625 +    ///  d.start();
   1.626 +    ///\endcode
   1.627 +    void run(Node s) {
   1.628 +      init();
   1.629 +      addSource(s);
   1.630 +      start();
   1.631 +    }
   1.632 +    
   1.633 +    ///Finds the shortest path between \c s and \c t.
   1.634 +    
   1.635 +    ///Finds the shortest path between \c s and \c t.
   1.636 +    ///
   1.637 +    ///\return The length of the shortest s---t path if there exists one,
   1.638 +    ///0 otherwise.
   1.639 +    ///\note Apart from the return value, d.run(s) is
   1.640 +    ///just a shortcut of the following code.
   1.641 +    ///\code
   1.642 +    ///  d.init();
   1.643 +    ///  d.addSource(s);
   1.644 +    ///  d.start(t);
   1.645 +    ///\endcode
   1.646 +    Value run(Node s,Node t) {
   1.647 +      init();
   1.648 +      addSource(s);
   1.649 +      start(t);
   1.650 +      return (*_pred)[t]==INVALID?0:(*_dist)[t];
   1.651 +    }
   1.652 +    
   1.653 +    ///@}
   1.654 +
   1.655 +    ///\name Query Functions
   1.656 +    ///The result of the %Dijkstra algorithm can be obtained using these
   1.657 +    ///functions.\n
   1.658 +    ///Before the use of these functions,
   1.659 +    ///either run() or start() must be called.
   1.660 +    
   1.661 +    ///@{
   1.662 +
   1.663 +    ///Copies the shortest path to \c t into \c p
   1.664 +    
   1.665 +    ///This function copies the shortest path to \c t into \c p.
   1.666 +    ///If it \c \t is a source itself or unreachable, then it does not
   1.667 +    ///alter \c p.
   1.668 +    ///\todo Is it the right way to handle unreachable nodes?
   1.669 +    ///\return Returns \c true if a path to \c t was actually copied to \c p,
   1.670 +    ///\c false otherwise.
   1.671 +    ///\sa DirPath
   1.672 +    template<class P>
   1.673 +    bool getPath(P &p,Node t) 
   1.674 +    {
   1.675 +      if(reached(t)) {
   1.676 +	p.clear();
   1.677 +	typename P::Builder b(p);
   1.678 +	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
   1.679 +	  b.pushFront(pred(t));
   1.680 +	b.commit();
   1.681 +	return true;
   1.682 +      }
   1.683 +      return false;
   1.684 +    }
   1.685 +	  
   1.686 +    ///The distance of a node from the root.
   1.687 +
   1.688 +    ///Returns the distance of a node from the root.
   1.689 +    ///\pre \ref run() must be called before using this function.
   1.690 +    ///\warning If node \c v in unreachable from the root the return value
   1.691 +    ///of this funcion is undefined.
   1.692 +    Value dist(Node v) const { return (*_dist)[v]; }
   1.693 +
   1.694 +    ///Returns the 'previous edge' of the shortest path tree.
   1.695 +
   1.696 +    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   1.697 +    ///i.e. it returns the last edge of a shortest path from the root to \c
   1.698 +    ///v. It is \ref INVALID
   1.699 +    ///if \c v is unreachable from the root or if \c v=s. The
   1.700 +    ///shortest path tree used here is equal to the shortest path tree used in
   1.701 +    ///\ref predNode(Node v).  \pre \ref run() must be called before using
   1.702 +    ///this function.
   1.703 +    ///\todo predEdge could be a better name.
   1.704 +    Edge pred(Node v) const { return (*_pred)[v]; }
   1.705 +
   1.706 +    ///Returns the 'previous node' of the shortest path tree.
   1.707 +
   1.708 +    ///For a node \c v it returns the 'previous node' of the shortest path tree,
   1.709 +    ///i.e. it returns the last but one node from a shortest path from the
   1.710 +    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   1.711 +    ///\c v=s. The shortest path tree used here is equal to the shortest path
   1.712 +    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   1.713 +    ///using this function.
   1.714 +    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   1.715 +				  G->source((*_pred)[v]); }
   1.716 +    
   1.717 +    ///Returns a reference to the NodeMap of distances.
   1.718 +
   1.719 +    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.720 +    ///be called before using this function.
   1.721 +    const DistMap &distMap() const { return *_dist;}
   1.722 + 
   1.723 +    ///Returns a reference to the shortest path tree map.
   1.724 +
   1.725 +    ///Returns a reference to the NodeMap of the edges of the
   1.726 +    ///shortest path tree.
   1.727 +    ///\pre \ref run() must be called before using this function.
   1.728 +    const PredMap &predMap() const { return *_pred;}
   1.729 + 
   1.730 +//     ///Returns a reference to the map of nodes of shortest paths.
   1.731 +
   1.732 +//     ///Returns a reference to the NodeMap of the last but one nodes of the
   1.733 +//     ///shortest path tree.
   1.734 +//     ///\pre \ref run() must be called before using this function.
   1.735 +//     const PredNodeMap &predNodeMap() const { return *_predNode;}
   1.736 +
   1.737 +    ///Checks if a node is reachable from the root.
   1.738 +
   1.739 +    ///Returns \c true if \c v is reachable from the root.
   1.740 +    ///\warning The source nodes are inditated as unreached.
   1.741 +    ///\pre \ref run() must be called before using this function.
   1.742 +    ///
   1.743 +    bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
   1.744 +    
   1.745 +    ///@}
   1.746 +  };
   1.747 +
   1.748 +
   1.749 +
   1.750 +
   1.751 + 
   1.752 +  ///Default traits class of Dijkstra function.
   1.753 +
   1.754 +  ///Default traits class of Dijkstra function.
   1.755 +  ///\param GR Graph type.
   1.756 +  ///\param LM Type of length map.
   1.757 +  template<class GR, class LM>
   1.758 +  struct DijkstraWizardDefaultTraits
   1.759 +  {
   1.760 +    ///The graph type the algorithm runs on. 
   1.761 +    typedef GR Graph;
   1.762 +    ///The type of the map that stores the edge lengths.
   1.763 +
   1.764 +    ///The type of the map that stores the edge lengths.
   1.765 +    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   1.766 +    typedef LM LengthMap;
   1.767 +    //The type of the length of the edges.
   1.768 +    typedef typename LM::Value Value;
   1.769 +    ///The heap type used by Dijkstra algorithm.
   1.770 +
   1.771 +    ///The heap type used by Dijkstra algorithm.
   1.772 +    ///
   1.773 +    ///\sa BinHeap
   1.774 +    ///\sa Dijkstra
   1.775 +    typedef BinHeap<typename Graph::Node,
   1.776 +		    typename LM::Value,
   1.777 +		    typename GR::template NodeMap<int>,
   1.778 +		    std::less<Value> > Heap;
   1.779 +
   1.780 +    ///\brief The type of the map that stores the last
   1.781 +    ///edges of the shortest paths.
   1.782 +    /// 
   1.783 +    ///The type of the map that stores the last
   1.784 +    ///edges of the shortest paths.
   1.785 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.786 +    ///
   1.787 +    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   1.788 +    ///Instantiates a PredMap.
   1.789 + 
   1.790 +    ///This function instantiates a \ref PredMap. 
   1.791 +    ///\param G is the graph, to which we would like to define the PredMap.
   1.792 +    ///\todo The graph alone may be insufficient for the initialization
   1.793 +    static PredMap *createPredMap(const GR &) 
   1.794 +    {
   1.795 +      return new PredMap();
   1.796 +    }
   1.797 +    ///The type of the map that stores whether a nodes is processed.
   1.798 + 
   1.799 +    ///The type of the map that stores whether a nodes is processed.
   1.800 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.801 +    ///By default it is a NullMap.
   1.802 +    ///\todo If it is set to a real map,
   1.803 +    ///Dijkstra::processed() should read this.
   1.804 +    ///\todo named parameter to set this type, function to read and write.
   1.805 +    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   1.806 +    ///Instantiates a ProcessedMap.
   1.807 + 
   1.808 +    ///This function instantiates a \ref ProcessedMap. 
   1.809 +    ///\param G is the graph, to which
   1.810 +    ///we would like to define the \ref ProcessedMap
   1.811 +    static ProcessedMap *createProcessedMap(const GR &)
   1.812 +    {
   1.813 +      return new ProcessedMap();
   1.814 +    }
   1.815 +    ///The type of the map that stores the dists of the nodes.
   1.816 + 
   1.817 +    ///The type of the map that stores the dists of the nodes.
   1.818 +    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.819 +    ///
   1.820 +    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   1.821 +    ///Instantiates a DistMap.
   1.822 + 
   1.823 +    ///This function instantiates a \ref DistMap. 
   1.824 +    ///\param G is the graph, to which we would like to define the \ref DistMap
   1.825 +    static DistMap *createDistMap(const GR &)
   1.826 +    {
   1.827 +      return new DistMap();
   1.828 +    }
   1.829 +  };
   1.830 +  
   1.831 +  /// Default traits used by \ref DijkstraWizard
   1.832 +
   1.833 +  /// To make it easier to use Dijkstra algorithm
   1.834 +  ///we have created a wizard class.
   1.835 +  /// This \ref DijkstraWizard class needs default traits,
   1.836 +  ///as well as the \ref Dijkstra class.
   1.837 +  /// The \ref DijkstraWizardBase is a class to be the default traits of the
   1.838 +  /// \ref DijkstraWizard class.
   1.839 +  /// \todo More named parameters are required...
   1.840 +  template<class GR,class LM>
   1.841 +  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   1.842 +  {
   1.843 +
   1.844 +    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   1.845 +  protected:
   1.846 +    /// Type of the nodes in the graph.
   1.847 +    typedef typename Base::Graph::Node Node;
   1.848 +
   1.849 +    /// Pointer to the underlying graph.
   1.850 +    void *_g;
   1.851 +    /// Pointer to the length map
   1.852 +    void *_length;
   1.853 +    ///Pointer to the map of predecessors edges.
   1.854 +    void *_pred;
   1.855 +//     ///Pointer to the map of predecessors nodes.
   1.856 +//     void *_predNode;
   1.857 +    ///Pointer to the map of distances.
   1.858 +    void *_dist;
   1.859 +    ///Pointer to the source node.
   1.860 +    Node _source;
   1.861 +
   1.862 +    public:
   1.863 +    /// Constructor.
   1.864 +    
   1.865 +    /// This constructor does not require parameters, therefore it initiates
   1.866 +    /// all of the attributes to default values (0, INVALID).
   1.867 +    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   1.868 +// 			   _predNode(0),
   1.869 +			   _dist(0), _source(INVALID) {}
   1.870 +
   1.871 +    /// Constructor.
   1.872 +    
   1.873 +    /// This constructor requires some parameters,
   1.874 +    /// listed in the parameters list.
   1.875 +    /// Others are initiated to 0.
   1.876 +    /// \param g is the initial value of  \ref _g
   1.877 +    /// \param l is the initial value of  \ref _length
   1.878 +    /// \param s is the initial value of  \ref _source
   1.879 +    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   1.880 +      _g((void *)&g), _length((void *)&l), _pred(0),
   1.881 +//       _predNode(0),
   1.882 +      _dist(0), _source(s) {}
   1.883 +
   1.884 +  };
   1.885 +  
   1.886 +  /// A class to make the usage of Dijkstra algorithm easier
   1.887 +
   1.888 +  /// This class is created to make it easier to use Dijkstra algorithm.
   1.889 +  /// It uses the functions and features of the plain \ref Dijkstra,
   1.890 +  /// but it is much simpler to use it.
   1.891 +  ///
   1.892 +  /// Simplicity means that the way to change the types defined
   1.893 +  /// in the traits class is based on functions that returns the new class
   1.894 +  /// and not on templatable built-in classes.
   1.895 +  /// When using the plain \ref Dijkstra
   1.896 +  /// the new class with the modified type comes from
   1.897 +  /// the original class by using the ::
   1.898 +  /// operator. In the case of \ref DijkstraWizard only
   1.899 +  /// a function have to be called and it will
   1.900 +  /// return the needed class.
   1.901 +  ///
   1.902 +  /// It does not have own \ref run method. When its \ref run method is called
   1.903 +  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   1.904 +  /// method of it.
   1.905 +  template<class TR>
   1.906 +  class DijkstraWizard : public TR
   1.907 +  {
   1.908 +    typedef TR Base;
   1.909 +
   1.910 +    ///The type of the underlying graph.
   1.911 +    typedef typename TR::Graph Graph;
   1.912 +    //\e
   1.913 +    typedef typename Graph::Node Node;
   1.914 +    //\e
   1.915 +    typedef typename Graph::NodeIt NodeIt;
   1.916 +    //\e
   1.917 +    typedef typename Graph::Edge Edge;
   1.918 +    //\e
   1.919 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
   1.920 +    
   1.921 +    ///The type of the map that stores the edge lengths.
   1.922 +    typedef typename TR::LengthMap LengthMap;
   1.923 +    ///The type of the length of the edges.
   1.924 +    typedef typename LengthMap::Value Value;
   1.925 +    ///\brief The type of the map that stores the last
   1.926 +    ///edges of the shortest paths.
   1.927 +    typedef typename TR::PredMap PredMap;
   1.928 +//     ///\brief The type of the map that stores the last but one
   1.929 +//     ///nodes of the shortest paths.
   1.930 +//     typedef typename TR::PredNodeMap PredNodeMap;
   1.931 +    ///The type of the map that stores the dists of the nodes.
   1.932 +    typedef typename TR::DistMap DistMap;
   1.933 +
   1.934 +    ///The heap type used by the dijkstra algorithm.
   1.935 +    typedef typename TR::Heap Heap;
   1.936 +public:
   1.937 +    /// Constructor.
   1.938 +    DijkstraWizard() : TR() {}
   1.939 +
   1.940 +    /// Constructor that requires parameters.
   1.941 +
   1.942 +    /// Constructor that requires parameters.
   1.943 +    /// These parameters will be the default values for the traits class.
   1.944 +    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   1.945 +      TR(g,l,s) {}
   1.946 +
   1.947 +    ///Copy constructor
   1.948 +    DijkstraWizard(const TR &b) : TR(b) {}
   1.949 +
   1.950 +    ~DijkstraWizard() {}
   1.951 +
   1.952 +    ///Runs Dijkstra algorithm from a given node.
   1.953 +    
   1.954 +    ///Runs Dijkstra algorithm from a given node.
   1.955 +    ///The node can be given by the \ref source function.
   1.956 +    void run()
   1.957 +    {
   1.958 +      if(Base::_source==INVALID) throw UninitializedParameter();
   1.959 +      Dijkstra<Graph,LengthMap,TR> 
   1.960 +	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   1.961 +      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
   1.962 +//       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   1.963 +      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
   1.964 +      dij.run(Base::_source);
   1.965 +    }
   1.966 +
   1.967 +    ///Runs Dijkstra algorithm from the given node.
   1.968 +
   1.969 +    ///Runs Dijkstra algorithm from the given node.
   1.970 +    ///\param s is the given source.
   1.971 +    void run(Node s)
   1.972 +    {
   1.973 +      Base::_source=s;
   1.974 +      run();
   1.975 +    }
   1.976 +
   1.977 +    template<class T>
   1.978 +    struct DefPredMapBase : public Base {
   1.979 +      typedef T PredMap;
   1.980 +      static PredMap *createPredMap(const Graph &) { return 0; };
   1.981 +      DefPredMapBase(const TR &b) : TR(b) {}
   1.982 +    };
   1.983 +    
   1.984 +    ///\brief \ref named-templ-param "Named parameter"
   1.985 +    ///function for setting PredMap type
   1.986 +    ///
   1.987 +    /// \ref named-templ-param "Named parameter"
   1.988 +    ///function for setting PredMap type
   1.989 +    ///
   1.990 +    template<class T>
   1.991 +    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   1.992 +    {
   1.993 +      Base::_pred=(void *)&t;
   1.994 +      return DijkstraWizard<DefPredMapBase<T> >(*this);
   1.995 +    }
   1.996 +    
   1.997 +
   1.998 +//     template<class T>
   1.999 +//     struct DefPredNodeMapBase : public Base {
  1.1000 +//       typedef T PredNodeMap;
  1.1001 +//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
  1.1002 +//       DefPredNodeMapBase(const TR &b) : TR(b) {}
  1.1003 +//     };
  1.1004 +    
  1.1005 +//     ///\brief \ref named-templ-param "Named parameter"
  1.1006 +//     ///function for setting PredNodeMap type
  1.1007 +//     ///
  1.1008 +//     /// \ref named-templ-param "Named parameter"
  1.1009 +//     ///function for setting PredNodeMap type
  1.1010 +//     ///
  1.1011 +//     template<class T>
  1.1012 +//     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
  1.1013 +//     {
  1.1014 +//       Base::_predNode=(void *)&t;
  1.1015 +//       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
  1.1016 +//     }
  1.1017 +   
  1.1018 +    template<class T>
  1.1019 +    struct DefDistMapBase : public Base {
  1.1020 +      typedef T DistMap;
  1.1021 +      static DistMap *createDistMap(const Graph &) { return 0; };
  1.1022 +      DefDistMapBase(const TR &b) : TR(b) {}
  1.1023 +    };
  1.1024 +    
  1.1025 +    ///\brief \ref named-templ-param "Named parameter"
  1.1026 +    ///function for setting DistMap type
  1.1027 +    ///
  1.1028 +    /// \ref named-templ-param "Named parameter"
  1.1029 +    ///function for setting DistMap type
  1.1030 +    ///
  1.1031 +    template<class T>
  1.1032 +    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1.1033 +    {
  1.1034 +      Base::_dist=(void *)&t;
  1.1035 +      return DijkstraWizard<DefDistMapBase<T> >(*this);
  1.1036 +    }
  1.1037 +    
  1.1038 +    /// Sets the source node, from which the Dijkstra algorithm runs.
  1.1039 +
  1.1040 +    /// Sets the source node, from which the Dijkstra algorithm runs.
  1.1041 +    /// \param s is the source node.
  1.1042 +    DijkstraWizard<TR> &source(Node s) 
  1.1043 +    {
  1.1044 +      Base::_source=s;
  1.1045 +      return *this;
  1.1046 +    }
  1.1047 +    
  1.1048 +  };
  1.1049 +  
  1.1050 +  ///Function type interface for Dijkstra algorithm.
  1.1051 +
  1.1052 +  /// \ingroup flowalgs
  1.1053 +  ///Function type interface for Dijkstra algorithm.
  1.1054 +  ///
  1.1055 +  ///This function also has several
  1.1056 +  ///\ref named-templ-func-param "named parameters",
  1.1057 +  ///they are declared as the members of class \ref DijkstraWizard.
  1.1058 +  ///The following
  1.1059 +  ///example shows how to use these parameters.
  1.1060 +  ///\code
  1.1061 +  ///  dijkstra(g,length,source).predMap(preds).run();
  1.1062 +  ///\endcode
  1.1063 +  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1.1064 +  ///to the end of the parameter list.
  1.1065 +  ///\sa DijkstraWizard
  1.1066 +  ///\sa Dijkstra
  1.1067 +  template<class GR, class LM>
  1.1068 +  DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1.1069 +  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1.1070 +  {
  1.1071 +    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1.1072 +  }
  1.1073 +
  1.1074 +} //END OF NAMESPACE LEMON
  1.1075 +
  1.1076 +#endif
  1.1077 +