lemon/max_matching.h
changeset 1435 8e85e6bbefdf
parent 1359 1581f961cfaa
child 1587 8f1c317ebeb4
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/max_matching.h	Mon May 23 04:48:14 2005 +0000
     1.3 @@ -0,0 +1,583 @@
     1.4 +/* -*- C++ -*-
     1.5 + * lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_MAX_MATCHING_H
    1.21 +#define LEMON_MAX_MATCHING_H
    1.22 +
    1.23 +#include <queue>
    1.24 +#include <lemon/invalid.h>
    1.25 +#include <lemon/unionfind.h>
    1.26 +#include <lemon/graph_utils.h>
    1.27 +
    1.28 +///\ingroup galgs
    1.29 +///\file
    1.30 +///\brief Maximum matching algorithm.
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +  /// \addtogroup galgs
    1.35 +  /// @{
    1.36 +
    1.37 +  ///Edmonds' alternating forest maximum matching algorithm.
    1.38 +
    1.39 +  ///This class provides Edmonds' alternating forest matching
    1.40 +  ///algorithm. The starting matching (if any) can be passed to the
    1.41 +  ///algorithm using read-in functions \ref readNMapNode, \ref
    1.42 +  ///readNMapEdge or \ref readEMapBool depending on the container. The
    1.43 +  ///resulting maximum matching can be attained by write-out functions
    1.44 +  ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    1.45 +  ///depending on the preferred container. 
    1.46 +  ///
    1.47 +  ///The dual side of a matching is a map of the nodes to
    1.48 +  ///MaxMatching::pos_enum, having values D, A and C showing the
    1.49 +  ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    1.50 +  ///a graph with factor-critical components, the nodes in A form the
    1.51 +  ///barrier, and the nodes in C induce a graph having a perfect
    1.52 +  ///matching. This decomposition can be attained by calling \ref
    1.53 +  ///writePos after running the algorithm. 
    1.54 +  ///
    1.55 +  ///\param Graph The undirected graph type the algorithm runs on.
    1.56 +  ///
    1.57 +  ///\author Jacint Szabo  
    1.58 +  template <typename Graph>
    1.59 +  class MaxMatching {
    1.60 +
    1.61 +  protected:
    1.62 +
    1.63 +    typedef typename Graph::Node Node;
    1.64 +    typedef typename Graph::Edge Edge;
    1.65 +    typedef typename Graph::UndirEdge UndirEdge;
    1.66 +    typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    1.67 +    typedef typename Graph::NodeIt NodeIt;
    1.68 +    typedef typename Graph::IncEdgeIt IncEdgeIt;
    1.69 +
    1.70 +    typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    1.71 +
    1.72 +  public:
    1.73 +    
    1.74 +    ///Indicates the Gallai-Edmonds decomposition of the graph.
    1.75 +
    1.76 +    ///Indicates the Gallai-Edmonds decomposition of the graph, which
    1.77 +    ///shows an upper bound on the size of a maximum matching. The
    1.78 +    ///nodes with pos_enum \c D induce a graph with factor-critical
    1.79 +    ///components, the nodes in \c A form the canonical barrier, and the
    1.80 +    ///nodes in \c C induce a graph having a perfect matching. 
    1.81 +    enum pos_enum {
    1.82 +      D=0,
    1.83 +      A=1,
    1.84 +      C=2
    1.85 +    }; 
    1.86 +
    1.87 +  protected:
    1.88 +
    1.89 +    static const int HEUR_density=2;
    1.90 +    const Graph& g;
    1.91 +    typename Graph::template NodeMap<Node> _mate;
    1.92 +    typename Graph::template NodeMap<pos_enum> position;
    1.93 +     
    1.94 +  public:
    1.95 +    
    1.96 +    MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
    1.97 +
    1.98 +    ///Runs Edmonds' algorithm.
    1.99 +
   1.100 +    ///Runs Edmonds' algorithm for sparse graphs (number of edges <
   1.101 +    ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   1.102 +    ///heuristic of postponing shrinks for dense graphs. 
   1.103 +    inline void run();
   1.104 +
   1.105 +    ///Runs Edmonds' algorithm.
   1.106 +    
   1.107 +    ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   1.108 +    ///Edmonds' algorithm with a heuristic of postponing shrinks,
   1.109 +    ///giving a faster algorithm for dense graphs.  
   1.110 +    void runEdmonds( int heur );
   1.111 +
   1.112 +    ///Finds a greedy matching starting from the actual matching.
   1.113 +    
   1.114 +    ///Starting form the actual matching stored, it finds a maximal
   1.115 +    ///greedy matching.
   1.116 +    void greedyMatching();
   1.117 +
   1.118 +    ///Returns the size of the actual matching stored.
   1.119 +
   1.120 +    ///Returns the size of the actual matching stored. After \ref
   1.121 +    ///run() it returns the size of a maximum matching in the graph.
   1.122 +    int size() const;
   1.123 +
   1.124 +    ///Resets the actual matching to the empty matching.
   1.125 +
   1.126 +    ///Resets the actual matching to the empty matching.  
   1.127 +    ///
   1.128 +    void resetMatching();
   1.129 +
   1.130 +    ///Returns the mate of a node in the actual matching.
   1.131 +
   1.132 +    ///Returns the mate of a \c node in the actual matching. 
   1.133 +    ///Returns INVALID if the \c node is not covered by the actual matching. 
   1.134 +    Node mate(Node& node) const {
   1.135 +      return _mate[node];
   1.136 +    } 
   1.137 +
   1.138 +    ///Reads a matching from a \c Node valued \c Node map.
   1.139 +
   1.140 +    ///Reads a matching from a \c Node valued \c Node map. This map
   1.141 +    ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
   1.142 +    ///must hold, and \c uv will be an edge of the matching.
   1.143 +    template<typename NMapN>
   1.144 +    void readNMapNode(NMapN& map) {
   1.145 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.146 +	_mate.set(v,map[v]);   
   1.147 +      } 
   1.148 +    } 
   1.149 +    
   1.150 +    ///Writes the stored matching to a \c Node valued \c Node map.
   1.151 +
   1.152 +    ///Writes the stored matching to a \c Node valued \c Node map. The
   1.153 +    ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   1.154 +    ///map[v]==u will hold, and now \c uv is an edge of the matching.
   1.155 +    template<typename NMapN>
   1.156 +    void writeNMapNode (NMapN& map) const {
   1.157 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.158 +	map.set(v,_mate[v]);   
   1.159 +      } 
   1.160 +    } 
   1.161 +
   1.162 +    ///Reads a matching from an \c UndirEdge valued \c Node map.
   1.163 +
   1.164 +    ///Reads a matching from an \c UndirEdge valued \c Node map. \c
   1.165 +    ///map[v] must be an \c UndirEdge incident to \c v. This map must
   1.166 +    ///have the property that if \c g.oppositeNode(u,map[u])==v then
   1.167 +    ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
   1.168 +    ///joining \c u to \c v will be an edge of the matching.
   1.169 +    template<typename NMapE>
   1.170 +    void readNMapEdge(NMapE& map) {
   1.171 +     for(NodeIt v(g); v!=INVALID; ++v) {
   1.172 +       UndirEdge e=map[v];
   1.173 +	if ( e!=INVALID )
   1.174 +	  _mate.set(v,g.oppositeNode(v,e));
   1.175 +      } 
   1.176 +    } 
   1.177 +    
   1.178 +    ///Writes the matching stored to an \c UndirEdge valued \c Node map.
   1.179 +
   1.180 +    ///Writes the stored matching to an \c UndirEdge valued \c Node
   1.181 +    ///map. \c map[v] will be an \c UndirEdge incident to \c v. This
   1.182 +    ///map will have the property that if \c g.oppositeNode(u,map[u])
   1.183 +    ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   1.184 +    ///of the matching.
   1.185 +    template<typename NMapE>
   1.186 +    void writeNMapEdge (NMapE& map)  const {
   1.187 +      typename Graph::template NodeMap<bool> todo(g,true); 
   1.188 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.189 +	if ( todo[v] && _mate[v]!=INVALID ) {
   1.190 +	  Node u=_mate[v];
   1.191 +	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.192 +	    if ( g.runningNode(e) == u ) {
   1.193 +	      map.set(u,e);
   1.194 +	      map.set(v,e);
   1.195 +	      todo.set(u,false);
   1.196 +	      todo.set(v,false);
   1.197 +	      break;
   1.198 +	    }
   1.199 +	  }
   1.200 +	}
   1.201 +      } 
   1.202 +    }
   1.203 +
   1.204 +
   1.205 +    ///Reads a matching from a \c bool valued \c Edge map.
   1.206 +    
   1.207 +    ///Reads a matching from a \c bool valued \c Edge map. This map
   1.208 +    ///must have the property that there are no two incident edges \c
   1.209 +    ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   1.210 +    ///map[e]==true form the matching.
   1.211 +    template<typename EMapB>
   1.212 +    void readEMapBool(EMapB& map) {
   1.213 +      for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   1.214 +	if ( map[e] ) {
   1.215 +	  Node u=g.source(e);	  
   1.216 +	  Node v=g.target(e);
   1.217 +	  _mate.set(u,v);
   1.218 +	  _mate.set(v,u);
   1.219 +	} 
   1.220 +      } 
   1.221 +    }
   1.222 +
   1.223 +
   1.224 +    ///Writes the matching stored to a \c bool valued \c Edge map.
   1.225 +
   1.226 +    ///Writes the matching stored to a \c bool valued \c Edge
   1.227 +    ///map. This map will have the property that there are no two
   1.228 +    ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   1.229 +    ///edges \c e with \c map[e]==true form the matching.
   1.230 +    template<typename EMapB>
   1.231 +    void writeEMapBool (EMapB& map) const {
   1.232 +      for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   1.233 +
   1.234 +      typename Graph::template NodeMap<bool> todo(g,true); 
   1.235 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.236 +	if ( todo[v] && _mate[v]!=INVALID ) {
   1.237 +	  Node u=_mate[v];
   1.238 +	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.239 +	    if ( g.runningNode(e) == u ) {
   1.240 +	      map.set(e,true);
   1.241 +	      todo.set(u,false);
   1.242 +	      todo.set(v,false);
   1.243 +	      break;
   1.244 +	    }
   1.245 +	  }
   1.246 +	}
   1.247 +      } 
   1.248 +    }
   1.249 +
   1.250 +
   1.251 +    ///Writes the canonical decomposition of the graph after running
   1.252 +    ///the algorithm.
   1.253 +
   1.254 +    ///After calling any run methods of the class, it writes the
   1.255 +    ///Gallai-Edmonds canonical decomposition of the graph. \c map
   1.256 +    ///must be a node map of \ref pos_enum 's.
   1.257 +    template<typename NMapEnum>
   1.258 +    void writePos (NMapEnum& map) const {
   1.259 +      for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   1.260 +    }
   1.261 +
   1.262 +  private: 
   1.263 +
   1.264 + 
   1.265 +    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   1.266 +		    UFE& blossom, UFE& tree);
   1.267 +
   1.268 +    void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   1.269 +		    UFE& blossom, UFE& tree);
   1.270 +
   1.271 +    bool noShrinkStep(Node x, typename Graph::template NodeMap<Node>& ear,  
   1.272 +		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   1.273 +
   1.274 +    void shrinkStep(Node& top, Node& middle, Node& bottom,
   1.275 +		    typename Graph::template NodeMap<Node>& ear,  
   1.276 +		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   1.277 +
   1.278 +    void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
   1.279 +		 UFE& blossom, UFE& tree);
   1.280 +
   1.281 +  };
   1.282 +
   1.283 +
   1.284 +  // **********************************************************************
   1.285 +  //  IMPLEMENTATIONS
   1.286 +  // **********************************************************************
   1.287 +
   1.288 +
   1.289 +  template <typename Graph>
   1.290 +  void MaxMatching<Graph>::run() {
   1.291 +    if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   1.292 +      greedyMatching();
   1.293 +      runEdmonds(0);
   1.294 +    } else runEdmonds(1);
   1.295 +  }
   1.296 +
   1.297 +
   1.298 +  template <typename Graph>
   1.299 +  void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   1.300 +
   1.301 +    for(NodeIt v(g); v!=INVALID; ++v)
   1.302 +      position.set(v,C);      
   1.303 +
   1.304 +    typename Graph::template NodeMap<Node> ear(g,INVALID); 
   1.305 +    //undefined for the base nodes of the blossoms (i.e. for the
   1.306 +    //representative elements of UFE blossom) and for the nodes in C 
   1.307 +
   1.308 +    typename UFE::MapType blossom_base(g);
   1.309 +    UFE blossom(blossom_base);
   1.310 +    typename UFE::MapType tree_base(g);
   1.311 +    UFE tree(tree_base);
   1.312 +    //If these UFE's would be members of the class then also
   1.313 +    //blossom_base and tree_base should be a member.
   1.314 +
   1.315 +    for(NodeIt v(g); v!=INVALID; ++v) {
   1.316 +      if ( position[v]==C && _mate[v]==INVALID ) {
   1.317 +	blossom.insert(v);
   1.318 +	tree.insert(v); 
   1.319 +	position.set(v,D);
   1.320 +	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   1.321 +	else normShrink( v, ear, blossom, tree );
   1.322 +      }
   1.323 +    }
   1.324 +  }
   1.325 +
   1.326 +    
   1.327 +  template <typename Graph>
   1.328 +  void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   1.329 +				      UFE& blossom, UFE& tree) {
   1.330 +
   1.331 +    std::queue<Node> Q;   //queue of the totally unscanned nodes
   1.332 +    Q.push(v);  
   1.333 +    std::queue<Node> R;   
   1.334 +    //queue of the nodes which must be scanned for a possible shrink
   1.335 +      
   1.336 +    while ( !Q.empty() ) {
   1.337 +      Node x=Q.front();
   1.338 +      Q.pop();
   1.339 +      if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   1.340 +      else R.push(x);
   1.341 +    }
   1.342 +      
   1.343 +    while ( !R.empty() ) {
   1.344 +      Node x=R.front();
   1.345 +      R.pop();
   1.346 +	
   1.347 +      for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   1.348 +	Node y=g.runningNode(e);
   1.349 +
   1.350 +	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   1.351 +	  //x and y must be in the same tree
   1.352 +	
   1.353 +	  typename Graph::template NodeMap<bool> path(g,false);
   1.354 +
   1.355 +	  Node b=blossom.find(x);
   1.356 +	  path.set(b,true);
   1.357 +	  b=_mate[b];
   1.358 +	  while ( b!=INVALID ) { 
   1.359 +	    b=blossom.find(ear[b]);
   1.360 +	    path.set(b,true);
   1.361 +	    b=_mate[b];
   1.362 +	  } //going till the root
   1.363 +	
   1.364 +	  Node top=y;
   1.365 +	  Node middle=blossom.find(top);
   1.366 +	  Node bottom=x;
   1.367 +	  while ( !path[middle] )
   1.368 +	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.369 +		  
   1.370 +	  Node base=middle;
   1.371 +	  top=x;
   1.372 +	  middle=blossom.find(top);
   1.373 +	  bottom=y;
   1.374 +	  Node blossom_base=blossom.find(base);
   1.375 +	  while ( middle!=blossom_base )
   1.376 +	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.377 +		  
   1.378 +	  blossom.makeRep(base);
   1.379 +	} // if shrink is needed
   1.380 +
   1.381 +	while ( !Q.empty() ) {
   1.382 +	  Node x=Q.front();
   1.383 +	  Q.pop();
   1.384 +	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   1.385 +	  else R.push(x);
   1.386 +	}
   1.387 +      } //for e
   1.388 +    } // while ( !R.empty() )
   1.389 +  }
   1.390 +
   1.391 +
   1.392 +  template <typename Graph>
   1.393 +  void MaxMatching<Graph>::normShrink(Node v,
   1.394 +				      typename Graph::template
   1.395 +				      NodeMap<Node>& ear,  
   1.396 +				      UFE& blossom, UFE& tree) {
   1.397 +    std::queue<Node> Q;   //queue of the unscanned nodes
   1.398 +    Q.push(v);  
   1.399 +    while ( !Q.empty() ) {
   1.400 +
   1.401 +      Node x=Q.front();
   1.402 +      Q.pop();
   1.403 +	
   1.404 +      for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   1.405 +	Node y=g.runningNode(e);
   1.406 +	      
   1.407 +	switch ( position[y] ) {
   1.408 +	case D:          //x and y must be in the same tree
   1.409 +
   1.410 +	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   1.411 +	    typename Graph::template NodeMap<bool> path(g,false);
   1.412 +	      
   1.413 +	    Node b=blossom.find(x);
   1.414 +	    path.set(b,true);
   1.415 +	    b=_mate[b];
   1.416 +	    while ( b!=INVALID ) { 
   1.417 +	      b=blossom.find(ear[b]);
   1.418 +	      path.set(b,true);
   1.419 +	      b=_mate[b];
   1.420 +	    } //going till the root
   1.421 +	
   1.422 +	    Node top=y;
   1.423 +	    Node middle=blossom.find(top);
   1.424 +	    Node bottom=x;
   1.425 +	    while ( !path[middle] )
   1.426 +	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.427 +		
   1.428 +	    Node base=middle;
   1.429 +	    top=x;
   1.430 +	    middle=blossom.find(top);
   1.431 +	    bottom=y;
   1.432 +	    Node blossom_base=blossom.find(base);
   1.433 +	    while ( middle!=blossom_base )
   1.434 +	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   1.435 +		
   1.436 +	    blossom.makeRep(base);
   1.437 +	  }
   1.438 +	  break;
   1.439 +	case C:
   1.440 +	  if ( _mate[y]!=INVALID ) {   //grow
   1.441 +
   1.442 +	    ear.set(y,x);
   1.443 +	    Node w=_mate[y];
   1.444 +	    blossom.insert(w);
   1.445 +	    position.set(y,A); 
   1.446 +	    position.set(w,D); 
   1.447 +	    tree.insert(y);
   1.448 +	    tree.insert(w);
   1.449 +	    tree.join(y,blossom.find(x));  
   1.450 +	    tree.join(w,y);  
   1.451 +	    Q.push(w);
   1.452 +	  } else {                 //augment  
   1.453 +	    augment(x, ear, blossom, tree);
   1.454 +	    _mate.set(x,y);
   1.455 +	    _mate.set(y,x);
   1.456 +	    return;
   1.457 +	  } //if 
   1.458 +	  break;
   1.459 +	default: break;
   1.460 +	}
   1.461 +      }
   1.462 +    }
   1.463 +  }
   1.464 +
   1.465 +  template <typename Graph>
   1.466 +  void MaxMatching<Graph>::greedyMatching() {
   1.467 +    for(NodeIt v(g); v!=INVALID; ++v)
   1.468 +      if ( _mate[v]==INVALID ) {
   1.469 +	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   1.470 +	  Node y=g.runningNode(e);
   1.471 +	  if ( _mate[y]==INVALID && y!=v ) {
   1.472 +	    _mate.set(v,y);
   1.473 +	    _mate.set(y,v);
   1.474 +	    break;
   1.475 +	  }
   1.476 +	}
   1.477 +      } 
   1.478 +  }
   1.479 +   
   1.480 +  template <typename Graph>
   1.481 +  int MaxMatching<Graph>::size() const {
   1.482 +    int s=0;
   1.483 +    for(NodeIt v(g); v!=INVALID; ++v) {
   1.484 +      if ( _mate[v]!=INVALID ) {
   1.485 +	++s;
   1.486 +      }
   1.487 +    }
   1.488 +    return s/2;
   1.489 +  }
   1.490 +
   1.491 +  template <typename Graph>
   1.492 +  void MaxMatching<Graph>::resetMatching() {
   1.493 +    for(NodeIt v(g); v!=INVALID; ++v)
   1.494 +      _mate.set(v,INVALID);      
   1.495 +  }
   1.496 +
   1.497 +  template <typename Graph>
   1.498 +  bool MaxMatching<Graph>::noShrinkStep(Node x,
   1.499 +					typename Graph::template 
   1.500 +					NodeMap<Node>& ear,  
   1.501 +					UFE& blossom, UFE& tree,
   1.502 +					std::queue<Node>& Q) {
   1.503 +    for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   1.504 +      Node y=g.runningNode(e);
   1.505 +	
   1.506 +      if ( position[y]==C ) {
   1.507 +	if ( _mate[y]!=INVALID ) {       //grow
   1.508 +	  ear.set(y,x);
   1.509 +	  Node w=_mate[y];
   1.510 +	  blossom.insert(w);
   1.511 +	  position.set(y,A);
   1.512 +	  position.set(w,D);
   1.513 +	  tree.insert(y);
   1.514 +	  tree.insert(w);
   1.515 +	  tree.join(y,blossom.find(x));  
   1.516 +	  tree.join(w,y);  
   1.517 +	  Q.push(w);
   1.518 +	} else {                      //augment 
   1.519 +	  augment(x, ear, blossom, tree);
   1.520 +	  _mate.set(x,y);
   1.521 +	  _mate.set(y,x);
   1.522 +	  return true;
   1.523 +	}
   1.524 +      }
   1.525 +    }
   1.526 +    return false;
   1.527 +  }
   1.528 +
   1.529 +  template <typename Graph>
   1.530 +  void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom,
   1.531 +				      typename Graph::template
   1.532 +				      NodeMap<Node>& ear,  
   1.533 +				      UFE& blossom, UFE& tree,
   1.534 +				      std::queue<Node>& Q) {
   1.535 +    ear.set(top,bottom);
   1.536 +    Node t=top;
   1.537 +    while ( t!=middle ) {
   1.538 +      Node u=_mate[t];
   1.539 +      t=ear[u];
   1.540 +      ear.set(t,u);
   1.541 +    } 
   1.542 +    bottom=_mate[middle];
   1.543 +    position.set(bottom,D);
   1.544 +    Q.push(bottom);
   1.545 +    top=ear[bottom];		
   1.546 +    Node oldmiddle=middle;
   1.547 +    middle=blossom.find(top);
   1.548 +    tree.erase(bottom);
   1.549 +    tree.erase(oldmiddle);
   1.550 +    blossom.insert(bottom);
   1.551 +    blossom.join(bottom, oldmiddle);
   1.552 +    blossom.join(top, oldmiddle);
   1.553 +  }
   1.554 +
   1.555 +  template <typename Graph>
   1.556 +  void MaxMatching<Graph>::augment(Node x,
   1.557 +				   typename Graph::template NodeMap<Node>& ear,  
   1.558 +				   UFE& blossom, UFE& tree) { 
   1.559 +    Node v=_mate[x];
   1.560 +    while ( v!=INVALID ) {
   1.561 +	
   1.562 +      Node u=ear[v];
   1.563 +      _mate.set(v,u);
   1.564 +      Node tmp=v;
   1.565 +      v=_mate[u];
   1.566 +      _mate.set(u,tmp);
   1.567 +    }
   1.568 +    typename UFE::ItemIt it;
   1.569 +    for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   1.570 +      if ( position[it] == D ) {
   1.571 +	typename UFE::ItemIt b_it;
   1.572 +	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   1.573 +	  position.set( b_it ,C);
   1.574 +	}
   1.575 +	blossom.eraseClass(it);
   1.576 +      } else position.set( it ,C);
   1.577 +    }
   1.578 +    tree.eraseClass(x);
   1.579 +
   1.580 +  }
   1.581 +
   1.582 +  /// @}
   1.583 +  
   1.584 +} //END OF NAMESPACE LEMON
   1.585 +
   1.586 +#endif //LEMON_MAX_MATCHING_H